Simplified Cyclic Analogues of Bastadin-5. Structure–Activity Relationships for Modulation of the RyR1/FKBP12 Ca²⁺ Channel Complex

Makoto N. Masuno,[†] Isaac N. Pessah,[‡] Marilyn M. Olmstead,[†] and Tadeusz F. Molinski^{*,†,¶}

Department of Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, and Department of Chemistry, Molecular Biosciences, Veterinary Medicine, and Center for Children's Environmental Health University of California, Davis, California 95616

Received July 22, 2005

Bastadin-5, a brominated macro-dilactam from the marine sponge *Ianthella basta*, enhances release of Ca²⁺ from stores within the sarcoplasmic reticulum (SR) of muscle and nonmuscle cells by modulating RyR1/ FKBP12 complex. Analogues of bastadin-5 present desirable targets for SAR studies to shed light on the gating mechanism and locus of bastadin-5 binding on these heteromeric channels that mediate essential steps in early coupling of membrane excitation to Ca²⁺ signaling cascades. Simple, ring-constrained analogues of bastadin-5 were synthesized from substituted benzaldehydes in a convergent manner, featuring an efficient S_NAr macroetherification, and evaluated in an assay that measures [³H]-ryanodine that is known to correlate with the functional open state of the Ca^{2+} channel. The simplified 14-membered ring, atropisomeric analogue (\pm)-7, like bastadin-5, enhanced ryanodine binding to the RyR1/FKBP12 complex (EC₅₀ 11 μ M), however, unexpectedly, the corresponding achiral 18-membered ring analogue 14 potently *inhibited* binding (IC₅₀ 6 μ M) under the same conditions. Structure-activity relationships of both families of cyclic analogues showed activity in a ryanodine binding assay that varied with substitutions of the Br atom on the trisubstituted aryl ring by various functional groups. The most active analogues were those that conserved the dibromocatechol ether moiety that corresponds to the 'western edge' of the bastadin-5 structure. These data suggest that cyclic analogues of bastadin-5 interact with the channel complex in a complex manner that can either enhance or inhibit channel activity.

Introduction

Natural products have played a major role in our current understanding of how FKBP12, an immunophilin, regulates both cellular signal processing and Ca^{2+} efflux within the junctional sarcoplasmic reticulum (JSR) of skeletal muscle tissue. Regulated Ca^{2+} release from the SR is critical for normal striated muscle contractility and dysfunctional Ca^{2+} channel conductance carries important consequences in disease states of skeletal and cardiac muscle. The immunophillins rapamycin (1) and FK506 (2) are two macrolide immunosuppressant compounds that bind to FKPB12 with high affinity and have been used to explore the RyR1/FKBP12 complex.¹⁻⁸ Bastadins are known compounds possessing newly identified properties: allosteric interactions with the RyR1/FKBP12 complex.⁹⁻¹³

Bastadin-5 (**3**) is one member of a family of over 20 bromotyrosine-derived macrolactams that have been isolated from the Verongid marine sponges *lanthella basta* (Pallas), *I. flabeliformis, I. quadrangulata, I.* sp. and *Psammaplysilla purpurea*.^{12,14–24} Our previous studies show that several, but not all, bastadins stimulate Ca²⁺ release from stores in the JSR by binding to the RyR1/FKBP12 channel in skeletal muscle. The most active member of the family is bastadin-5 (**3**, EC₅₀ = $2.2 \,\mu$ M), while a constitutional isomer of **3**, bastadin-19 (**3a**), does not mobilize Ca²⁺ from the channel (EC₅₀ > 100 μ M), but competes for the binding site of bastadin-5.¹³ Bastadin-5 also facilitates FK506-induced release of FKBP12 from RyR1, indicating the former may influence stability of the RyR1/FKBP12 complex.¹³ Although these effects are concentration-

Figure 1. Natural products that interact with FKBP12 or the RyR1/ FKBP12 complex.

dependent and follow saturable sigmoidal binding isotherms, the locus of binding of bastadin-5 to the RyR1/FKBP12 complex is not yet known.

The structure of 3 is comprised of four brominated, modified tyrosines and tyramines arrayed within a 28-membered macrodilactam. Biosynthetically, each half of the 28-membered ring macrocycle that is common to most bastadins appears to derive from oxidative coupling of one unit each of bromotyramine and bromotyrosine. The two halves are united through two amide

^{*} To whom correspondence should be addressed. Phone: 858-534-7115. Fax: 858-822-0386. E-mail: tmolinski@ucsd.edu.

[†] Department of Chemistry, UC Davis.

[‡] Molecular Biosciences, School of Veterinary Medicine.

[¶] Department of Chemistry and Biochemistry, UCSD.

Scheme 1. Retrosynthetic Analysis for 14- and 18-Membered Ring Analogues of Bastadin-5

bonds to give a pseudo-tetrameric macrodilactam. Each of the 21 bastadins has an α -ketoxime that appears to derive from α -oxidation of the bromotyrosine. Oxidative modification may also occur at C5/C6 to introduce a vinyl bond (e.g. bastadin-4) or a C6 hydroxyl group (e.g. bastadin-7). The most active member of this family, bastadin-5 (3), stimulates release of Ca^{2+} from stores in the SR by binding to an as-yet unidentified site of the intact RyR1/FKBP12 complex in skeletal muscle tissues.^{11,13} The RyR1/FKBP12 complex is a ~2.2 MDa heterotetrameric protein anchored within the junctional sarcoplasmic reticulum (JSR) and spans the 100 nm gap between the JSR and transverse tubule membranes. The RyR1 complex is therefore essential for orchestrating physiological Ca²⁺ release during excitation contraction coupling of skeletal muscle. Each monomeric polypeptide is composed of ~5000 amino acid residues folded into several transmembrane domains. Competition studies have revealed that the binding site of 3 is distinct from sites on the channel surface that are recognized as other SR Ca²⁺ channel effectors, such as Ca²⁺, Mg²⁺, ATP, caffeine, or the plant alkaloid ryanodine.13 Bastadins mediate their effects upon the Ca^{2+} channel without compromising the RyR1/ FKBP12 association, unlike FK506 which promotes the dissociation of FKBP12 from RyR1. While the macrolide FK506 was useful in revealing the nature of interaction of the large tetrameric channel complex with FKBP12, the bastadins have provided information on the intact RyR1/FKBP12 Ca²⁺ channel complex. For example, addition of **3** to Ca^{2+} channel preparations revealed the function of the RyR1/FKBP12 complexes as a regulator in the filling capacity of the Ca^{2+} stores by influencing the "leak state" conformation of RyR1.10

Members of the bastadin family show a range of potency (EC₅₀ 2.3 to >100 μ M) for binding to the RyR1/FKBP12 complex. Since the functional groups present in each bastadin are essentially the same, we hypothesize that this structural—activity relationship (SAR) is attributable to different preferred solution conformers of bastadins as a result of differences in nonbonded interactions (e.g. Br-steric interactions) in the 'western' and 'eastern' parts of the bastadins. Consequently,

the altered torsional angles and even the overall shape of the molecule, may affect the receptor binding energy. We proposed the synthesis of simple rationally designed cyclic analogues of 3 (e.g. 4-15), which embody the substituted catechol ethers of the 'western' hemisphere of 3 within two families of macrocycles bearing 14- and 18-membered ring sizes. Ringconstrained macrocycles with constrained aryl C-O-C-C torsional angles may reveal preferential ryanodine-binding agonism, which in turn may shed light on the minimum pharmacophore of 3. We report here the results of a study which shows the minimal analogue 7 (EC₅₀ = $11 \,\mu$ M), which embodies the bromocatechol ether unit found in 3, has comparable activity to the natural product 3 in the ryanodine binding assay. Unexpectedly, compound 14, a synthetic 18-membered ring analogue of 3, was a potent antagonist in the same binding assay $(IC_{50} = 6 \ \mu M)$ which suggests brominated catechol ethers exhibit a bimodal activity that varies with nonbonded interactions. Interestingly, the ketoximino group found in the natural products appears not to be required for activity. Our studies suggest a complex interplay of stereoelectronic factors in binding of bastadin-5 analogues to the RyR1/FKBP12 receptor, which suggests a bimodal model for Ca²⁺ gating, which may be tunable by a selection of properly designed 'second generation' analogues.

Synthesis

The retrosynthetic analysis shown in Scheme 1 reveals the design for preparation of cyclic analogues. We envisioned the 14-membered cyclic analogues, a smaller, ring-constrained macrocycle embodying a single amide bond, would derive from common intermediates **16** and **17**. The larger 18-membered analogues would include an additional β -alanine as a spacer. The units would be assembled by amide bond formation and the pivotal macrocyclization would be accomplished by S_NAr coupling according to Zhu and co-workers.^{25,26} The nitro group in compounds **18** and **19** would activate the leaving group and serve as a handle to introduce variable functionality at this position through diazonium salt displacements.

Scheme 2. Synthesis of Substituted Phenethylamine 16^a

^{*a*} Key: (a) i. Li₂CO₃, DMF, 45 °C, 1 h; ii. BnBr, 88% (b) i. malonic acid, pyridine, piperidine (cat.), toluene, reflux, 12 h; ii. 1 N HCl, 86%; (c) ethyl chloroformate, Hünig's base, acetone, 0 °C, 2 h; ii. NaN₃, H₂O, 0 °C; iii. EtOH, toluene, reflux, 12 h, 65%; (d) i. TFA, Et₃SiH, -10 °C, 0.5 h; ii. NaHCO₃ (aq), 94%; (e) hydrazine, KOH, 1,4-dioxane, reflux, 1 h, 92%

Simple Dreiding molecular models predicted that the 14membered analogues would be locked into fixed conformations as atropisomers due to severe torsional strain that arises from rotation about the long axis of the p-O-aryl linkage, while the 18-membered ring analogues should retain relative conformational mobility.

The synthesis of common intermediate **16** is illustrated in Scheme 2. Key considerations in the synthesis included management of the reductively sensitive aryl Br groups and *O*-benzyl protecting groups. Synthesis of substituted phenethylamine **16** was carried out using methodology we had optimized earlier to satisfy these criteria.²⁷

The method is amenable to radio-labeling of analogues by insertion of tritium.²⁸ Selective benzylation of the more acidic hydroxyl of 20 was performed through a modification of a published procedure.²⁹ Pretreatment of catechol 20 with base (DMF, Li₂CO₃, 45 °C, 1 h) prior to the addition of benzyl bromide achieved selective benzylation of the *p*-OH group to provide 21 in good yield (88%). The position of benzylation was confirmed by NOE experiments. A Doebner-modified Knoevenagel reaction of **21** led to the requisite α,β -unsaturated acid 22 in 86% yield which was converted to enamide 23 by a Curtius rearrangement of the corresponding acyl azide (65% over three steps).³⁰ Cationic hydrogenation of enamide 23 gave carbamate 24 (94%).27 Standard conditions for hydrolysis of methyl/ethyl carbamates (e.g. (KOH, H₂O, EtOH, reflux) were ineffective when applied to 24: either starting material or the corresponding oxazolidone, formed by cyclization/elimination of MeOH/EtOH, were returned. More forcing conditions (NH₂NH₂, KOH, 1,4-dioxane, 80 °C) gave phenethylamine 16 in good yield (92%).

Hydrogenation of methyl 4-fluoro-3-nitrocinnamate (**25**) in the presence of Wilkinson's catalyst³¹ with careful control of H₂ pressure and temperature gave methyl ester **26** in excellent yield $(95\%)^{32}$ without reduction of the nitro functionality. Saponification of ester **26** completed the synthesis of the dihydrocinnamic acid **17** (86%) (Scheme 3).

Two possible routes to the cyclic intermediates were considered: S_NAr coupling of a suitable aryl fluoride with a phenol followed by macrolactamization, or the reverse sequence of reactions. In the event, the latter method proved to be the most efficient (Scheme 4) whereas the former resulted in uniformly poor yields of cyclic product (<10%). Amide coupling of intermediates **16** and **17** afforded the macroetherification precursor **18** in 72% yield. Macroetherification of **18** under dilute conditions (2 mM, K₂CO₃, 4 Å sieves, DMSO, RT) smoothly converted **18** to lactam **27** in high yield (85%).

Scheme 3. Synthesis of Common Intermediate 17^a

^{*a*} Key: (a) RhCl(PPh₃)₃, H₂ (3 atm), toluene, 8 h, 95%; (b) i. LiOH, THF, H₂O, MeOH (4:1:1); ii. HCl aq (0.5 M), 86%.

Scheme 4. Synthesis of 14-Membered Analogues 4, 5, and 6 via Macroetherification^{*a*}

^{*a*} Key: (a) i. CuBr₂ (0.8 equiv), 'BuONO, CH₃CN, 0 °C, 1 h; ii. **27** in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 66% (b) i. CuBr₂ (10 equiv), 'BuONO, CH₃CN, 0 °C, 1 h; ii. **28** in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 32%; (c) i. 'BuONO, THF, 0 °C, 1 h; ii. **28** in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 32%; (c) i. 'BuONO, THF, 0 °C, 1 h; ii. **28** in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 39%; (d) i. H₂SO₄, AcOH, NaNO₂, 0 °C, 0.5 h; ii. **28** in portions, 0 °C, 1 h then warmed to room temperature, 20 min; iii. KI, H₂O, rt, 15 min then warmed to 70 °C, 15 min, 16%; (e) BBr₃, -78 °C, 1 h, 91%; (f) TFA, rt, 24 h, 70%; (g) TFA, rt, 24 h, 75%.

Removal of the benzyl group provided the 14-membered ringconstrained analogue **4**. Reduction of lactam **27** to the aniline derivative **28** under conditions that preserved the reductively sensitive aryl Br groups (CrCl₂, DMF, room temperature, 73%) and set the stage for the synthesis of several analogues via diazonium salts (Scheme 5). Removal of the benzyl group from **28** gave aniline **5**. The diazonium salt prepared from **5** was quenched with sodium azide to give the azido analogue **6** in 66% yield.³³ The dibromo or tribromide compounds **29** and **30** were procured in acceptable yields by Sandmeyer-type reaction **Scheme 6.** Synthesis of 18-Membered Analogues by S_NAr Macroetherification^{*a*}

^{*a*} Key: (a) i. Boc₂O, CH₃CN, rt, 12 h; ii. Na₂CO₃, MeOH, H₂O (4:1), rt, 76%; (b) TIPSCl, DMF, rt, 24 h, 95%; (c) i. TFA, CH₂Cl₂, (1:1), rt, 1h; ii. NaHCO₃ (aq), 95%; (d) i. *N*-Boc-β-alanine, EDCI, HOBt, CH₂Cl₂, rt, 12 h; ii. 0.5 N HCl, 92%; (e) i. TFA, CH₂Cl₂, (1:1), rt, 1 h; ii. NaHCO₃ (aq), 97%; (f) i. **17**, EDCI, HOBt, CH₂Cl₂, rt, 12 h; ii. 0.5 N HCl; 93%; (g) CsF, DMSO (2 mM), 4 Å sieves, rt, 20 h, 84%; (h) BBr₃, CH₂Cl₂, rt, 8 h, 82%; (i) CrCl₂, DMF, rt, 12h, 55%; (j) BBr₃, CH₂Cl₂, rt, 8 h, 54%; (k) i. AcOH/H₂O, 9:1, NaNO₂ 0 °C; ii. NaN₃, 0 °C, 69%; (l) i. CuBr₂ (0.8 equiv), 'BuONO, CH₃CN, 0 °C, 1 h; ii. 40 in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 25%; (m) BBr₃, CH₂Cl₂, rt, 8 h, 94%; (l) i. CuBr₂ (3.0 equiv), 'BuONO, CH₃CN, 0 °C, 1 h; ii. 40 in portions, 0 °C, 2 h then warmed to room temperature; iii. 1 N HCl, 29%; (m) BBr₃, CH₂Cl₂, rt, 8 h, 72%.

of the corresponding diazonium salts prepared from **28** (*tert*-BuNO₂, CH₃CN) and use of carefully controlled amounts of CuBr₂ (0.8 or 10 equiv; respectively). The use of substoichiometric CuBr₂ (0.8 equiv) resulted in formation of **29**, however, excess CuBr₂ (10 equiv) gave the brominated product **30**.³⁴ Compound **28** suffered unexpected reductive deamination when the corresponding diazonium salt was prepared with *tert*-BuNO₂ in the presence of THF to give compound **31**, presumably by hydride abstraction from the solvent.^{34b} Quenching the latter diazonium salt potassium iodide resulted in aryl iodide **10**. Removal of the benzyl protecting group in **29**, **30**, and **31**, as before, yielded the corresponding phenolic 14-membered analogues **7**, **8**, and **9**, respectively.

Synthesis of the 18-membered ring analogues is illustrated in Scheme 6. Phenol **32** was protected as a triisopropylsilyl ether (95%) followed by removal of the *N*-Boc under standard conditions to provide amine **34** (97%), which was coupled, in turn, with *N*-Boc- β -alanine to afford amide **35** in 92% yield. Removal of the Boc group from **35** as before (97%) followed by coupling of the resultant free-amine **36** to acid **17** (EDCI, HOBt, CH₂Cl₂) provided the precursor for cyclization **19** in 92% yield. One-pot, tandem removal of the TIPS protecting group and macroetherification of **19** with CsF smoothly produced the 18-membered cyclic product **37** in excellent yield (84%). The nitro group in lactam **37** was reduced as before to provide the

Figure 2. Representative NOEs of 29.

aniline **38** (58%) which was deprotected to provide phenolic amine **12** (54%). Diazotization, substitution, and deprotection reactions were carried out using similar sequences to those described above to provide azido analogue **13** (69%), dibromo analogue **14**, and tribromide **15**.

Structure and Biological Evaluation

For the purpose of discussion, the 14-membered analogues are numbered according to Figure 2. The simple cyclic analogues were designed to embody the 'western' portion of **3** but with different ring sizes and substitutions on ring B (C17). It was hypothesized that the 'western' portion of **3** composed the minimum pharmacophore, where variation of the torsional angle (C1-O2-C3-C4) would modulate activity. The highly constrained 14-membered analogues would contain fewer degrees of freedom and simultaneously constrain both the biphenyl ether angle (C1-O2-C3) and the torsional angle (C1-O2-C3-C4) compared to the larger 18-membered analogues. Varying the substitution on ring B may reveal electronic effects upon the binding of bastadin analogues to the RyR1/FKBP12 complex.

Solution and solid-state conformation studies of the analogues 4-15 were ascertained from NMR NOE and chemical shift analysis (Figure 2, Table 1), and X-ray crystal structure analysis (Figure 3). With the exception of compound 9, the 14-membered cyclic analogues are chiral and exhibit atropisomerism due to restricted rotation. Consequently the latter compounds were synthesized as racemates. Evidence for atropisomerism is seen in the NMR data as illustrated by spectral interpretation of lactam 29 (the precursor to 7) as follows (Figure 2, Table 1). The ¹H NMR spectrum of **29** showed a diagnostic two-proton signal with an 'AB quartet' J coupling pattern (δ 5.18, d, 1H, J = 11 Hz; δ 5.34, d, 1H, J = 11 Hz) corresponding to diastereotopic O-benzyloxy protons. Restricted rotation about the catechol ether linkage (C1-O2-C3) was also evident from diamagnetism due to ring current effects leading to an exceptionally high field H19 aryl proton signal (δ 5.06, 1H, J = 2.0Hz).

The constrained conformation of **29** places H19 in ring A within the shielding region that is close to a perpendicular extended from center of ring B. Complexity in ¹H NMR signals of other CH₂ signals in **29** was also consistent with diastereotopic methylene groups and, likewise, seen in the ¹H NMR spectra of **7** and other products derived from **28**, except **9**. The debromo analogue **9**, where free rotation about the 1,4-axis of the disubstitued phenyl ring is allowed and the barrier to macrocyclic torsional inversion is relaxed, shows no atropisomerism.

A rigid, compact conformation of analogue **29** was supported by NOE experiments (Figure 2, Table 1). Representative NOEs of **29** are consistent with a conformation where ring B lies close to parallel with a plane that bisects ring A (Figure 2). The solidstate conformations of **4** and **9** were determined by X-ray crystallography (Figure 3). The catechol ether torsional angles in **4** are 83.0° (C3-O2-C1-C17) and 152.4° (C1-O2-C3-

no.	${}^{1}\mathrm{H}\delta,\mathrm{m},J(\mathrm{Hz})$	¹³ C (ppm)	COSY	HMBC	NOE
1		152.9			
3		154.6			
4		136.4			
5		117.9			
6	6.88 dd (2.0, 1.2)	125.8	H19, H8	C5, C7, C19, C8	
7		142.8			
8	2.64 m	30.5	H9		H6, H9, H10; H19
9	3.29 m	39.7	H8; H10		H8, H10; H18
10	4.90 m		H9		H8, H9, H12, H19
11		171.1			
12	2.29 m	41.0	H13	C11, C13, C14	H10, H13, H15, H18
13	3.00 m	31.7	H12	C11, C12, C14; C15, C18	H12, H15; H18
14		140.6			
15	7.23 dd (8.4, 2.4)	130.4	H16; H18	C1, C13, C15; C17	H13, H16
16	7.05 d (8.4)	126.0	H15	C1, C18	H15, H19
17		118.7			
18	7.51 d (2.4)	134.6	H15	C1, C13, C15; C17	H12, H13
19	5.06 d (2.0)	113.1	H6	C3, C7, C8, C6	H9, H10; H16
20a	5.34 d (10.8)	75.2	H20b	C4, C21; C (22–26)	
20b	5.18 d (10.8)	75.2	H20a	C4, C21, C (22–26)	
21		137.0			
22-26	7.3–7.4 m; 7.61–7.64 m	128.8, 128.4, 128.2	H22-26	C20, C22–C26)	

Table 1. NMR Data for 29 (400 MHz, CDCl₃)

Figure 3. X-ray crystal structures of (\pm) -4 and 9.

C4). The bond angle (C1–O2–C3) of 110.7° deviated slightly from that expected from sp³ hybridization. Slight bending of the aromatic ring B from planarity (C15–C14–C18–C17, 9.5°) was also evident, compensating in part for the ring strain. Few differences between the solution state conformation and the solid conformation were ascertained; this is not unexpected due to the rigidity imposed by torsional strain within these compounds. Comparison of the X-ray crystal structures of analogues 4 and 9 revealed identical bond angles and distances of their respective carbon skeletons. As expected, the 18-membered counterparts 11–15 did not show atropisomerism due to the additional degrees of freedom conferred by the β -alanine linker.

The barrier to rotation in the 14-membered ring analogue **29** was briefly examined by temperature dependent ¹H NMR (d_6 -DMSO). At temperatures up to T = 105 °C the ¹H NMR line shapes of the *O*-Bn signals in **29** remained sharp and revealed no tendency toward coalescence or broadening which suggests a barrier to rotation > 17 kcal/mol.³⁵

Biological Activity

Biological evaluation of the synthetic analogues 4-15, together with bastadin-5 (3), was carried out using the [³H]-ryanodine binding assay (Table 2). The assay provides a 'readout' of the open state of the Ca²⁺ channel by detection of [³H]-ryanodine bound to the protein which occurs only in the open state.¹³ In earlier studies, we showed that [³H]-ryanodine binding correlates with the functional properties of bastadin-5

(3), in particular, transport of Ca^{2+} across the channel and alteration of channel gating (open state probability).¹³

Equilibrium binding of [³H]-ryanodine to skeletal JSR was measured in the presence of analogue and solvent DMSO, or solvent alone (DMSO, 0.5% v/v final concentration), together with assay buffer containing 250 mM KCl, 15 mM NaCl, 20 mM HEPES, 20 μ M Ca²⁺, pH 7.4. Nonspecific binding was determined in the presence of 1 μ M cold ryanodine.

Most of the 14-membered ring analogues retained at least some of the potency of 3 on the ryanodine binding to the RyR1/ FKBP12 complex. The most potent agonist was 7 (EC₅₀ = 11 μ M) with a structure corresponding to the substitution pattern of bastadin-5. Substitution of the bromine at C17 in ring B by different functional groups (NO₂, NH₂, H, I, N₃) diminished ryanodine binding. Replacement of the bromine with a nitro group in compound 4 resulted in a 2-fold loss of activity (EC50 = 21 μ M), whereas the amino analogue **5** (EC₅₀ = 33 μ M) and the iodo analogue 10 (EC₅₀ = 28 μ M) retained only a third of the activity of **7**. The debromo analog **9** (EC₅₀ < 100 μ M) was nearly inactive underscoring the importance of the dibromocatechol ether moiety at the western edge of the bastadin-5 structure. Despite almost identical conformations (X-ray), analogues 4 and 9 showed the largest difference in ryanodine binding among the 14-membered ring analogues (EC₅₀ = 21and >100 μ M, respectively). Since the nitro group is expected to occupy space equivalent to the van der Waals radius of a Br atom, it is tempting to speculate that stereoelectronic effects may be responsible for differences in biological activity. Unfortunately, we cannot be more definitive without additional data on the locus of binding of bastadin-5 at the receptor surface and knowledge of the putative amino acid residue contacts that mediate the binding contacts. The addition of a third Br atom on ring B in analogue 8 resulted in total loss of agonist activity in this 14-membered ring analogue (EC₅₀ < 100 μ M) although, curiously, this was not the case in the corresponding 18membered ring analogue (see below).

An unexpected trend was revealed by measurements of ryanodine binding in the presence of the 18-membered ring analogues: two of the five compounds were *inhibitors* of ryanodine binding, which suggests inhibition of Ca^{2+} channel opening. While the amino- and azido-substituted 18-membered ring compounds (**12** and **13**, respectively) showed weak activity in promoting channel activation (EC₅₀ 21 μ M and 24 μ M),

entry	compound	skeleton	Х	Y	EC ₅₀ (µM) ^b	IC ₅₀ (µM) ^c
1	3	А	_	_	2.2 ± 0.1	-
2	(±)- 4	В	NO_2	Н	20.9 ± 10.8	-
4	(±)- 5	В	NH_2	Н	33.0 ± 12.2	-
5	(±)- 6	В	N_3	Н	_	63 ± 8.1
6	(±)- 7	В	Br	Н	10.9 ± 2.6	-
7	(±)- 8	В	Br	Br	>100	-
8	(±)- 9	В	Н	Н	>100	-
9	(±) -10	В	Ι		28.6 ± 14.2	-
10	11	С	NO_2	Н	24 ± 3.9	-
11	12	С	NH_2	Н	21 ± 5.7	-
12	13	С	N_3	Н	20.0 ± 2.3	-
13	14	С	Br	Н	_	6.2 ± 1.2
14	(±) -15	С	Br	Br	_	47 ± 15
15	49	D	Br	Н	>100	
16	52	D	Br	Br	6.5 ± 0.7	
17	53				>100	

^{*a*} Equilibrium binding of 1 nM [³H]-ryanodine to skeletal junctional sarcoplasmic reticulum (SR) was performed in assay buffer containing 250 mM KCl, 15 mM NaCl, 20 mM HEPES, 20 μ M Ca²⁺, pH 7.4. Nonspecific binding was determined in the presence of 1 μ M cold ryanodine. ^{*b*}Agonist-like activity (enhanced ³[H]-ryanodine binding). ^{*c*}Antagonist-like (reduced ³[H]-ryanodine binding)

compound **14** with the bastadin-5-like substitution pattern was a more potent inhibitor (IC₅₀ = 6 μ M, Figure 4), in diametric opposition to that of the 14-membered ring **7** with the same aryl substitution pattern which is agonist-like (EC₅₀ 11 μ M). The remaining compounds in the 18-membered ring series showed weaker agonist-like activity (EC₅₀s 24–58 μ M).

These results suggest the interaction of simple bastadin-5 analogues with the RyR1/FKBP12 is more complex and shows a broader range of action than expected. Each of the active 14-membered ring analogues were synthesized as racemic mixtures, but we predict that specific protein-drug contacts with the binding site should favor only one of the two enantiomers of each compound. Consequently, it would be of interest to investigate the ryanodine binding and Ca^{2+} transport activity of an enantiopure preparation of the most active analogue, **7**.

Photoaffinity Analogues. With the ryanodine-binding properties of both 14-membered and 18-membered ring analogues in hand, we asked the question, 'can a simple photoaffinity analogue of **3** be designed which retains high potency for the RyR1/FKBP12 complex?' Using the key design principles from the 18-membered ring series, we replaced the β -alanine with a β -lysine residue to prepare an 18-membered macrolactam that contains a primary amino group that would could be acylated at the ϵ -NH₂ group with a photoreactive azidobenzoic acid. Photolysis of the derived azidobenzamide analogue of **3** would produce a nitrene that may covalently bond to the RyR1/FKPB12 complex. Tryptic digestion and MS analysis of the photolabeled RyR1/FKPB12-derived peptides from the exposed surface may reveal the consensus amino acid sequence of the bastadin binding site.

Figure 4. Concentration-dependent enhancement/inhibition of the binding of 1 nM [³H]-ryanodine to RyR1–FKBP12 in skeletal SR by bastadin analogues (a) **14** and (b) **52**. Equilibrium binding of 1 nM [³H]-ryanodine to skeletal junctional sarcoplasmic reticulum (SR) was performed in assay buffer containing 250 mM KCl, 15 mM NaCl, 20 mM HEPES, 20 μ M Ca²⁺, pH 7.4. Control (1% DMSO aq) = 0.175 pmol [³H]-ryanodine/mg SR. Nonspecific binding was determined in the presence of 1 μ M cold ryanodine. Measurements were carried out in triplicate; error bars represent ± SD.

Differentially *N*-protected β -lysine (**41**) was coupled (EDCI, HOBt) to bromotyramine **34** (Scheme 7), followed by removal of the β -*N* Fmoc protecting group (81%) and coupling to the

Scheme 7. Synthesis of Photoaffinity Analogues by S_NAr Macroetherification^a

^{*a*} a. i. EDCI, HOBt, CH₂Cl₂, **41**;³⁶ ii. H⁺, 81%; b. *N*,*N*,*N*-tetramethylethylenediamine, CH₂Cl₂; c. EDCI, HOBt, CH₂Cl₂, **17** 86% two steps; d. K₂CO₃, 4 Å mol. sieves, DMSO, 75%; e. CrCl₂, DMF, 85%; f. *t*-BuONO, CuBr₂, CH₃CN, 38% of **47**, 42% of **50**; g. BBr₃, CH₂Cl₂; h. 2-azido-5-iodobenzoic acid,³⁷ EDCI, HOBt, DMF, **48**, 33% two steps; i. BBr₃, CH₂Cl₂ j. 2-azido-5-iodobenzoic acid,³⁷ EDCI, HOBt, DMF, **51**, 48% two steps.

substituted dihydrocinnamic acid **17** to give the *N*,*N*'-diacyl β -lysine **44** (86% over two steps). Exposure of **44** to standard S_NAr macroetherification conditions gave cyclic analogue **45** in very good yield (75%). Transformation of the NO₂ group in **44** to the corresponding analogues (replacement of NO₂ by Br (**47**) and the overbrominated product **50**) was achieved, as before, by reduction–diazonium salt displacements. Finally, simultaneous deprotection of the aryl ethers and ϵ -*N*-Boc protecting group in each of the latter compounds, followed by coupling to 2-azido-5-iodobenzoic acid³⁷ (EDCI, HOBt) gave the corresponding photoaffinity analogues **49** and **52**, respectively, in acceptable yields (two steps, 33% and 48%, respectively).

When tested in the ryanodine binding assay, each of the photoaffinity analogues gave very different results. Compound **49** was essentially inactive (EC₅₀ > 100 μ M), however, dibromo compound **52** showed very potent agonist-like activity (EC₅₀ = 6 μ M, Figure 4). It should be noted that the methyl ester **53** prepared from 2-azido-5-iodobenzoic acid (CH₂N₂, Et₂O, 0 °C), was inactive in this assay. Compound **52** shows binding affinity for the receptor similar to that of bastadin-5 (**3**), and its synthesis is amenable to introduction of radiolabel for preparation of [¹²⁵I]-**52**. Consequently, **52** should provide a suitable probe for photoaffinity labeling of the RyR-FKBP12 complex.

Conclusion

The synthesis of simple, ring-constrained cyclic analogues of bastadin-5, with structures that embody the 'western' edge of 3, was accomplished by an efficient, macrocyclization based on intramolecular S_NAr substitution. Assay of two classes of analogues that differ in ring size and aryl substitution patterns in the [³H]-ryanodine binding assay, which detects the open state of the RyR1/FKBP12 Ca²⁺ channel, revealed an interesting bimodal range of activity represented by compounds with agonistic and antagonistic properties. In each of the two families, the compound structures that embodied the same 'western edge' substitution pattern found in native bastadin-5 (dibromocatechol ether) showed the highest activities. Members of the smaller 14-membered ring family, constrained by a conformationally rigid macrocycle, exhibited atropisomerism. The synthesis of an active photoaffinity probe 52, based on the structure of bastadin-5, has been achieved. The synthetic design of 52 should facilitate preparation of [125I]-52 for use in defining the bastadin-5 binding locus on the surface of the heterotetrameric RyR1/FKBP12 complex that constitutes the membrane bound Ca²⁺ channel of the SR. The unexpected antagonistic activity of the 18-membered ring analogues suggests more complex interactions occur between the receptor site and this family of ligands. A bimodal gating model that accommodates bindingactivation-inactivation of the RyR1/FKBP12 complex by bastadin-5 analogues suggests the possibility that Ca²⁺ release from the SR may be modulated by 'fine-tuning' of stereoelectronic factors. Tuned release of Ca²⁺ from stores by customdesigned ligand-gate interactions between small molecule analogues of 3 and the RyR1/FKBP12 complex is an attractive idea that may have practical benefits in treatment of disease conditions that arise from complications of defective SR Ca²⁺ channel activity, including arrythmias, heart failure, and malignant hypothermia.³⁸

Experimental Section

General. TLC was carried out on aluminum plates coated with silica (0.2 mm) containing a fluorescent indicator. Spots were visualized was under a UV lamp then sprayed with a solution of vanillin in ethanolic-H₂SO₄, or ninhydrin in ethanol followed by heating. Purity of each compound was established as >95% by ¹H NMR and HPLC. Pyridine, triethylamine, dimethyl sulfoxide (DMSO), and dimethylformamide (DMF) were distilled from glass over CaH₂. Dichloromethane, acetonitrile, toluene, tetrahydrofuran, and 1,4-dioxane were dried through commercial alumina cartridge. Optical rotations were recorded on a Jasco DIP-370 instrument. IR spectra were recorded on a Mattson Galaxy FTIR. ¹H and ¹³C NMR were recorded at 400 and 100 MHz, respectively, in the stated solvent (≥99.5% atom D) and referenced to residual protonated solvent signal ($\delta_{\rm H}$ CDCl₃ 7.24 ppm; CD₃OD, 3.30 ppm; $\delta_{\rm C}$ CDCl₃ 77.00 ppm, CD₃OD, 49.00 ppm).

[3H]-Ryanodine Binding Asssay. Specific binding of [3H]ryanodine to high affinity sites on rabbit skeletal membrane vesicles^{13,39} was determined by incubating SR protein (25 μ g), containing the RyR1-FKBP12 complex, with [3H]-ryanodine (1 nM) for 3.5 h at 37 °C in binding assay buffer containing KCl (250 mM), NaCl (15mM), HEPES (20 mM), and CaCl₂ (20 µM) and at pH 7.4 (500 μ L, final volume). The binding reaction was initiated by addition of a solution of the drug in DMSO (final DMSO concentration $\sim 1\%$) to the complete assay medium, and the incubation was terminated by filtration through Whatman GF/B glass fiber filters using a Brandel cell harvester (Gaithersburg, MD). Separation of bound and free [3H]-ryanodine was performed by washing the filters with ice-cold buffer (3 \times 500 μ L) containing Tris-HCl (20 mM), KCl (250 mM), and NaCl (15 mM) at pH 7.4. Filters were placed in scintillation vials containing scintillant (5 mL). Treatments and controls were measured in triplicate, and bound radioactivity (dpm) was measured by scintillation counting and corrected for background. Ryanodine affinity curves were plotted and fitted to sigmoidal functions (Origin, Microcal Software, Inc., Northampton, MA). Error bars represented in Figure 4 are ± 1 standard deviation. Positive controls were bastadin-5 (EC₅₀ 2.0 μ M) and PCB95 (2,2',3,5',6-pentachlorobiphenyl),^{40,41} and nonspecific binding was determined in the presence of 100-fold 'cold' ryanodine.

5-Bromo-4-hydroxy-17-nitro-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (4). BBr₃ (20 μ L, 0.21 mmol) was added to a solution of lactam 27 (20 mg, 0.04 mmol) in CH₂Cl₂ (300 μ L) at -78 C. The orange solution was stirred (1 h, -78 °C), quenched with NaHCO3 (aq, satd), and extracted with EtOAc (3 \times 10 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 4. Flash chromatography $(SiO_2,$ CH₂Cl₂/MeOH 20:1) gave 4 (15.0 mg, 91%) as an amorphous solid: mp 259-260 °C (CH₂Cl₂/MeOH); IR (ZnSe, neat) v 3282, 2933, 1642, 1531, 1346 cm⁻¹; ¹H NMR (300 MHz, CD₃COCD₃) δ 2.40 (t, J = 6.3 Hz, 2H), 2.60–2.64 (m, 2H), 3.00–3.20 (m, 4H), 5.28 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 2.0 Hz, 1H), 6.93 (brs, 1H) 7.29 (d, J = 8.4 Hz, 1H), 7.63 (dd, J = 8.4, 2.4 Hz, 1H), 8.00 (d, J = 2.4 Hz, 1H), 8.90 (brs, 1H); ¹³C NMR (75 MHz, CD₃COCD₃) & 30.8 (CH₂), 32.0 (CH₂), 40.2 (CH₂), 40.6 (CH₂), 110.3 (C), 114.3 (CH), 126.7 (CH), 127.4 (CH), 127.9 (CH), 134.0 (C), 137.4 (C), 141.9 (C), 142.3 (C), 144.9 (C), 150.3 (C), 151.1 (CH), 170.9 (C); HRMS (DEI) found m/z 406.0179 [M]⁺, $C_{17}H_{15}N_2O_5Br$ requires 406.0164.

17-Amino-5-bromo-4-hydroxy-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (5). BBr₃ (2 μ L, 0.02 mmol) was added to a solution of lactam 28 (3 mg, 0.006 mmol) in CH₂Cl₂ (300 μ L) at -78 °C. The orange solution was stirred (1 h, -78 °C), quenched with a NaHCO₃ (aq, satd), and extracted with EtOAc (3 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **5**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH 20:1) gave **5** (1.4 mg, 58%) as an amorphous solid: IR (ZnSe, neat) ν 3371, 2927, 1635, 1502, 1434 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.15–2.23 (m, 1H), 2.32–2.38 (m, 1H), 2.57–2.71 (m, 2H), 2.86–2.94 (m, 2H), 3.25–3.57 (m, 2H), 4.89 (brs, 1H), 5.36 (d, J = 1.6 Hz, 1H), 5.79 (brs, 1H), 6.62–6.67 (m, 2H), 6.82–6.84 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 30.2 (CH₂), 32.2 (CH₂), 39.7 (CH₂), 41.1 (CH₂), 109.2, 112.7, 120.2, 124.7, 125.06, 131.3, 132.4, 140.3, 141.0, 142.2, 171.8; HRMS (DEI) found *m*/*z* 376.0434 [M]⁺, C₁₇H₁₇N₂O₃Br requires 376.0423.

17-Azido-5-bromo-4-hydroxy-2-oxa-10-aza-tricyclo[12.2.2.1%]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (6). NaNO₂ (0.2 mg, 3 μ mol) was added in one portion into a chilled solution (0 °C, ice bath) of arylamine 5 (1.0 mg, 0.003 mmol) in AcOH/ H_2O (20 μ L, 9:1). The solution was allowed to stir 15 min followed by the addition of NaN₃ (1.0 mg, 0.015 mmol) in one portion. After 0.5 h, the reaction was quenched with H₂O and was extracted with CH_2Cl_2 (3 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 6. HPLC purification (C₁₈ 5 μ m Microsorb 10 \times 250 mm, MeOH/H₂O, 3:2, 4 mL/min, rt, 6.4 min) provided 6 (0.7 mg, 66%) as an oil: IR (neat) ν 3241, 2923, 2115, 1639, 1500 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.33-2.38 (m, 2H), 2.63-2.67 (m, 2H), 2.94-2.99 (m, 2H), 3.13-3.17 (m, 2H), 5.18 (d, J = 2.0Hz, 1H), 6.87 (d, J = 2.0 Hz, 1H), 7.01–7.11 (m, 3H), 7.80 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 30.7 (CH₂), 32.6 (CH₂), 40.5 (CH₂), 41.4 (CH₂), 114.0 (CH), 123.3 (CH), 126.7 (CH), 127.1 (CH), 128.6 (CH), 134.0 (C), 136.2 (C), 141.9 (C), 174.4 (C); HRMS (DEI) found *m/z* 402.0336 [M]⁺, C₁₇H₁₅N₄O₃Br requires 402.0327.

5,17-Dibromo-4-hydroxy-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (7). BBr₃ (2 μ L, 0.02 mmol) was added to a solution of lactam **29** (4.0 mg, 7 μ mol) in CH₂Cl₂ (200 μ L) at -78 C. The orange solution was stirred (1 h, -78 °C), quenched with a NaHCO₃ (aq, satd), and extracted with EtOAc (3 \times 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 7. Flash chromatography (SiO₂, CH₂Cl₂/MeOH 20:1) gave 7 (3.0 mg, 91%) as an amorphous solid: IR (ZnSe, neat) v 3291, 2933, 1637, 1504, 1224 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.18–2.25 (m, 1H), 2.32–2.38 (m, 1H), 2.61–2.64 (m, 2H), 2.98–3.02 (m, 2H), 3.20–3.36 (m, 2H), 4.85 (brs, 1H), 5.07 (d, J = 2.0 Hz, 1H), 5.85 (brs, 1H), 6.85 (d, J = 2.0 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.24 (dd, J = 8.4, 2.0 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 30.3 (CH_2), 31.6 (CH_2), 39.5 (CH_2), 41.0 (CH), 112.7 (CH), 118.5 (C), 125.6 (CH), 126.0 (CH), 130.3 (CH), 132.0 (C), 134.3 (CH), 140.9 (C), 148.5 (C); HRMS (DCI/NH₃) found *m*/*z* 439.9493 [M]⁺, C₁₇H₁₆O₃NBr₂ requires 439.9497.

5,15,17-Tribromo-4-hydroxy-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (8). Trifluoroacetic acid (0.5 mL) was added to lactam 30 (5 mg, 8 µmol) and was allowed to stir at room temperature for 24 h. The trifluoroacetic acid was removed under reduced pressure, and traces of trifluoroacetic acid were removed by reevaporation from toluene to give crude 8. Reversed phase HPLC purification (C_{18} , 5 μ m Microsorb, 10×250 mm, MeOH/H₂O, 60:40, 3 mL/min) provided 8 (3.2 mg, 75%) as a colorless amorphous solid: IR (ZnSe, neat) ν 3284, 2937, 1644, 1503, 1463, 1232, 1058 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.28-2.36 (m, 1H), 2.47-2.70 (m, 3H), 3.00-3.09 (m, 1H), 3.20-3.26 (m, 2H), 3.38-3.47 (m, 1H), 4.90 (d, J = 6.8 Hz, 1H), 5.14 (d, J = 1.6 Hz, 1H), 5.78 (brs, 1H), 6.87 (d, J = 1.6 Hz, 1H), 7.35 (s, 1H), 7.53 (s, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 30.5 (CH₂), 32.0 (CH₂), 37.1 (CH₂), 39.9 (CH₂), 109.6 (C), 112.5 (CH), 118.1 (C), 122.5 (C), 125.9 (CH), 129.4 (CH), 132.6 (C), 136.8 (CH), 139.5 (C), 140.6 (C), 148.1 (C), 153.2 (C), 170.8 (C); HRMS (DCI/NH_3) found m/z 517.8594 $[M]^+$, $C_{17}H_{15}O_3NBr_3$ requires 517.8602.

5-Bromo-4-hydroxy-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (9). Trifluoroacetic acid (0.5 mL) was added to lactam 31 (4 mg, 9 μ mol) and was allowed to stir at room temperature for 24 h. The trifluoroacetic acid was removed under reduced pressure, and traces of trifluoroacetic acid were removed by reevaporation from toluene. Reversed phase HPLC purification (C₁₈, 5 μ m Microsorb, 10 \times 250 mm, MeOH/ H₂O, 60:40, 3 mL/min) provided 9 (2.2 mg, 70%) as a colorless solid: mp 250-251 °C (CH₂Cl₂/MeOH); IR (ZnSe, neat) v 2929, 1627, 1501, 1429 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.34-2.37 (m, 2H), 2.58-2.63 (m, 2H), 2.96-3.00 (m, 2H), 3.10-3.13 (m, 2H), 4.60 (brs, 1H), 5.03 (d, J = 2.0 Hz, 1H), 6.79 (dd, J =2.0, 0.8 Hz, 1H), 7.02, (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 30.7 (CH₂), 32.7 (CH₂), 40.7 (CH₂), 41.4 (CH₂), 110.8 (C), 115.4 (CH), 125.4 (CH), 125.8 (CH), 132.2 (CH), 133.8 (C), 140.0 (C), 153.3 (C), 158.3 (C), 174.7 (C); HRMS (DCI/NH₃) found m/z 362.0399 [M + H]⁺, C₁₇H₁₇O₃NBr requires 362.0392.

5-Bromo-4-hydroxy-17-iodo-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (10). Sodium nitrite (1.6 mg, 0.023 mmol) was added in one portion to concentrated sulfuric acid (50 μ L) chilled with an ice bath. AcOH (60 μ L) was added dropwise to this solution at 0 °C. The solution was stirred for 30 min and then treated with lactam 28 (9.4 mg, 0.021 mmol) in portions over 1 h. This mixture was stirred for 1 h at 0 °C and then room temperature for 20 min. KI (5.6 mg, 0.034 mmol) in 2 M HCl (0.2 mL) was added to this mixture, and the mixture was stirred at room temperature for 15 min, then 70 °C for 10 min. The mixture was chilled by ice bath and treated with Na_2SO_3 (aq, satd) followed by extraction with EtOAc (4 \times 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 10. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb, 10 \times 250 mm, MeOH/H₂O, 65:35, 3 mL/min) gave 10 (1.6 mg, 16%) as a pale yellow amorphous solid: IR (ZnSe, neat) ν cm⁻¹ 3289, 2928, 1643, 1502, 1433, 1217; ¹H NMR (400 MHz, CD₃OD) δ 2.50-2.54 (m, 2H), 2.78-2.84 (m, 2H), 3.10-3.16 (m, 2H), 3.30-3.36 (m, 2H), 5.20 (d, J = 2.0 Hz, 1H), 7.02, (d, J = 2.0 Hz, 1H), 7.27 (d, J = 8.4Hz, 1H), 7.49 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.92, (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 24.7 (CH₂), 26.1 (CH₂), 34.6 (CH₂), 35.4 (CH₂), 108.4 (CH), 119.9 (CH), 120.5 (CH), 126 (C), 135.8 (CH), 135.9 (CH), 151.9 (C); HRMS (DEI) found m/z 486.9296 [M]⁺, C₁₇H₁₅NO₃Br requires 486.9280.

5-Bromo-4-hydroxy-20-nitro-2-oxa-10,14-diaza-tricyclo-[16.2.2.1^{0,0}]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (11). BBr₃ (4 µL, 0.042 mmol) was added to a solution of lactam **37** (8 mg, 0.014 mmol) in CH₂Cl₂ (100 μ L) at -78 °C. The orange solution was stirred (1 h, -78 °C), quenched with NaHCO₃ (aq, satd), and extracted with EtOAc (3 \times 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 11. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 20:1) gave **11** (6 mg, 82%) as an oil: IR (ZnSe, neat) v 3405, 3303, 1648, 1533 cm⁻¹; ¹H NMR (400 MHz, CD_3OD) δ 2.16–2.13 (m, 2H), 2.40–2.34 (m, 2H), 2.65–2.60 (m, 2H), 3.10-3.00 (m, 2H), 3.31-3.27 (m, 2H), 3.51-3.46 (m, 4H), 5.29-5.25 (m, 1H), 5.95 (d, J = 2.0 Hz, 1H), 6.20 (bs, 1H), 6.23(brt, J = 2.0 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 7.17 (d, J = 8.4Hz, 1 H), 7.47 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.81 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 31.3 (CH₂), 33.4 (CH₂), 34.0 (CH₂), 35.4 (CH₂), 38.9 (CH₂), 41.0 (CH₂), 110.3 (C), 114.2 (CH), 124.7 (CH), 126.1 (CH), 126.9 (CH), 131.8 (C), 135.1 (CH), 139.8 (C), 141.8 (C), 142.1(C), 145.7 (C), 145.9 (C), 170.6 (C), 171.9 (C); HRMS (DCI) found m/z 478.0629 [M + H]⁺, C₂₀H₂₁O₆N₃Br requires 478.0614.

21-Amino-4-hydroxy-5-bromo-2-oxa-10,14-diaza-tricyclo-[16.2.2.1^{0,0}]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (12). BBr₃ (4 μ L, 0.042 mmol) was added to a solution of lactam 38 (7 mg, 0.013 mmol) in CH₂Cl₂ (100 μ L) at -78 °C. The orange solution was stirred (1 h, -78 °C), quenched with NaHCO₃ (aq, satd), and extracted with EtOAc (3 × 10 mL). The organic solution was combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **12**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 20:1) gave **12** (3 mg, 51%) as an oil: IR (ZnSe, neat) ν 3328, 2929, 1648, 1509, 1423, 1278 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.07–2.10 (m, 2H), 2.35–2.38 (m, 2H), 2.52–2.55 (m, 2H), 2.81–2.84 (m, 2H), 3.19–3.21 (m, 2H), 3.28–3.20 (m, 2H), 3.37–3.40 (m, 2H), 6.10 (d, J = 2.0 Hz, 1H), 6.54 (dd, J = 2.0, 8.4 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 6.54 (dd, J = 2.0, 8.4 Hz, 1H), 6.70 (d, J = 2.0 Hz, 1H), 6.81 (d, J = 8.4, 1H), 6.96 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 32.8, (CH₂), 34.5 (CH₂), 35.0 (CH₂), 36.3 (CH₂), 39.5 (CH₂), 42.4 (CH₂), 111.4 (C), 115.7 (CH), 118.9 (CH), 120.3 (CH), 123.3 (CH), 126.8 (CH), 133.4 (C), 139.9 (C), 140.8 (C), 141.8 (C), 143.8 (C), 148.2 (C), 173.8 (C), 174.9 (C); LRMS (ESI) found m/z 448.0 [M + H]⁺, C₂₀H₂₃N₃BrO₃ requires 448.0.

21-Azido-4-hydroxy-5-bromo-2-oxa-10,14-diaza-tricyclo-[16.2.2.1^{0,0}]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (13). NaNO₂ (0.8 mg, 12 μ mol) was added in one portion to a chilled solution (0 °C, ice bath) of arylamine 12 (4.8 mg, 11 μ mol) in AcOH/H₂O (60 μ L, 9:1). The solution was stirred for 15 min and treated with NaN₃ (4.0 mg, 62 μ mol) in one portion. After 0.5 h, the reaction was quenched with H₂O and was extracted with CH_2Cl_2 (3 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 13. Purification by HPLC (C18 5 μm Microsorb 10 \times 250 mm, MeOH/H₂O, 3:2, 4 mL/min, t_R 6.0 min) provided 13 (3.5 mg, 68%) as an oil: IR (neat) v 3303, 2925, 2117, 1648, 1500 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.05–2.09 (m, 2H), 2.40– 2.45 (m, 2H), 2.58-2.62 (m, 2H), 2.91-2.96 (m, 2H), 3.21-3.27 (m, 2H), 3.37-3.42 (m, 2H), 6.05 (d, J = 2.0 Hz, 1H), 6.95-7.10(m, 4H), 7.67-7.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃/CD₃OD, 1:1) § 31.9 (CH₂), 33.8 (CH₂), 34.1 (CH₂), 35.4 (CH₂), 39.1 (CH₂), 41.3 (CH₂), 111.0 (CH), 115.3 (CH), 121.6 (CH), 123.7 (CH), 127.0 (CH), 127.1 (CH), 132.3 (C), 133.0 (C), 139.7 (C), 143.0 (C), 145.7 (C), 147.5 (C), 173.1 (C), 173.4 (C); HRMS (DEI) found m/z 473.0694 [M]⁺, C₂₀H₂₀N₅O₄Br requires 473.0699.

5,21-Dibromo-4-hydroxy-2-oxa-10,14-diaza-tricyclo[16.2.2.1^{0,0}]**tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (14).** BBr₃ (1 μ L, 5 μ mol) was added to a solution of lactam **39** (1 mg, 2 μ mol) in CH₂Cl₂ (20 μ L) at -78 °C. The orange solution was stirred (1 h, -78 °C), quenched with a NaHCO₃ (aq, satd), and extracted with EtOAc (3 × 10 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **14**. Flash chromatography (SiO₂, CH₂Cl₂/ MeOH 20:1) gave **14** (0.8 mg, 94%) as an amorphous solid: ¹H NMR (400 MHz, CD₃OD) δ 2.08–2.11 (m, 2H), 2.41–2.44 (m, 2H), 2.58–2.61 (m, 2H), 2.93–2.96 (m, 2H), 3.23–3.24 (m, 2H), 3.38–3.41 (m, 2H), 5.98 (d, *J* = 1.6 Hz, 1H), 7.05 (d, *J* = 2.0 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 7.21 (dd, *J* = 1.6, 8.4 Hz, 1H), 7.53 (d, *J* = 2.0 Hz, 1H); HRMS (DCI) found *m*/*z* 510.9853 [M + Na]⁺, C₂₀H₂₁O₄N₂Br₂ requires 510.9868.

5,20,22-Tribromo-4-hydroxy-2-oxa-10,14-diaza-tricyclo-[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (15). BBr₃ (1M 50 μ L) was added to a solution of lactam **40** (4 mg, 6 μ mol) in CH₂Cl₂ (50 μ L) at -78 °C. The orange solution was stirred (1 h, -78 °C), quenched with NaHCO₃ (aq, satd), and extracted with EtOAc (3 × 10 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **15**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH 20:1) gave **15** (2.5 mg, 72%) as an amorphous solid: ¹H NMR (400 MHz, CD₃OD) δ 1.92–2.00 (m, 1H), 2.26– 2.32, (m, 1H), 2.40–2.50 (m, 2H), 2.54–2.71 (m, 2H), 2.86–2.92 (m, 1H), 3.03–3.23 (m, 3H), 3.55–3.72 (m, 2H), 5.98 (d, *J* = 2.0 Hz, 1H), 7.07 (d, *J* = 2.0 Hz, 1H), 7.50 (s, 1H), 7.56 (s, 1H); LRMS (DCI) found *m*/*z* 610.9 [M + Na]⁺, C₂₀H₁₉O₄N₂Br₃Na requires 610.9.

5-(2-Aminoethyl)-2-benzyloxy-3-bromophenol (16). KOH (70 mg, 1.3 mmol) and hydrazine (cat.) were added to a solution of carbamate **24** (22 mg, 0.05 mmol) dissolved in dry 1,4-dioxane (1 mL). This heterogeneous mixture was rapidly stirred and heated to 80 °C. After 0.5 h, the mixture was treated with HCl (1 N) until the mixture was neutral by pH paper and was extracted with EtOAc

 $(3 \times 25 \text{ mL})$. The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to yield **16** as an oil (14 mg 92% crude). The product was carried forward without purification. ¹H NMR (400 MHz, CDCl₃) δ 2.58 (bs, 2H), 2.85 (bs, 2H), 4.20 (bs, 2H), 4.97 (s, 2H), 6.65 (bs, 1H), 6.89 (bs, 1H), 7.2–7.6 (m, 5H); HRMS (DCI/NH₃) found *m*/*z* 322.0445 [M + H]⁺, C₁₅H₁₇O₂NBr requires 322.0443.

3-(4-Benzyloxy-3-bromo-5-hydroxyphenyl)-N-[2-(4-fluoro-3nitro-phenyl)-ethyl]propionamide (18). Acid 17 (83 mg, 0.39 mmol), HOBt (55 mg, 0.41 mmol), and EDCI (78 mg, 0.41 mmol) were added sequentially to a solution of amine 16 (120 mg, 0.37 mmol) in CH₂Cl₂ (5 mL) at room temperature. After 1 h, the reaction was quenched with HCl (1 N, 20 mL) and extracted with CH_2Cl_2 (4 × 20 mL). The organic layers were combined, washed with brine and dried (Na₂SO₄), and the volatiles were removed to provide crude 18 which was purified by flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) yielding 18 (140 mg, 72%) as an amorphous solid: IR (KBr, pellet) v 3392, 3075, 1639, 1529, 1425, 1349 cm⁻¹; ¹H NMR (300 MHz, CD₃COCD₃) δ 2.52 (t, J = 7.2Hz, 2H), 2.65 (t, J = 7.2 Hz, 2H), 3.01 (t, J = 7.2 Hz), 3.38 (dt, J = 7.2, 6.0 Hz, 2H), 5.01 (s, 2H), 6.78 (d, J = 1.8 Hz, 1H), 6.88 (d, J = 1.8 Hz, 1H), 7.25 (brs, 1H), 7.30–7.45 (m, 4H), 7.50– 7.60 (m, 2H), 7.64–7.69 (m, 1H), 7.99 (dd, J = 6.9, 2.1 Hz, 1H), 8.68 (bs, 1H); ¹³C NMR (75 MHz, CD₃COCD₃) δ 31.0 (CH₂), 35.0 (CH₂), 37.6 (CH₂), 41.2 (CH₂), 74.8 (CH₂), 117.3 (CH), 117.6 (C), 118.7 (CH, J = 21.0 Hz), 124.3 (CH), 126.2 (CH, J = 3.0 Hz), 128.5 (CH), 128.8 (2 CH), 136.7 (CH, J = 8.0 Hz), 137.7 (C), 138.1 (C, J = 7.0 Hz), 139.6 (C, J = 4.3 Hz), 142.8 (C), 151.9 (C), 154.2 (C, J = 258.0 Hz), 171.9 (C); HRMS (DEI) found m/z516.0686 [M]⁺, C₂₄H₂₂N₂O₅BrF requires 516.0696.

N-(2-{2-[4-Benzyloxy-3-bromo-5-triisopropyl-silanyloxy)-phenyl]-ethylcarbamoyl}-ethyl-3-(4-fluoro-3-nitro-phenyl)-propionamide (19). EDCI (76 mg, 0.40 mmol) was added to a solution of amine 36 (110 mg, 0.20 mmol), HOBt (54 mg, 0.40 mmol), and acid 17 (47 mg, 0.22 mmol) in CH_2Cl_2 (5.0 mL). The solution stirred overnight at room temperature, quenched with HCl (1 N) and extracted with CH_2Cl_2 (3 × 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 19. Flash chromatography (SiO_2 , CH₂Cl₂/MeOH, 20:1) gave **19** (139 mg, 93%) as an oil: IR (NaCl, neat) v 3293, 2944, 2867, 1644, 1538 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, 7.2 Hz, 18H), 1.26 (sept, J = 7.2 Hz, 3H), 2.28 (t, J = 6.0 Hz, 2H), 2.45 (t, J = 7.2 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2Hz)2H), 2.99 (t, J = 7.2 Hz, 2H), 3.50–3.38 (m, 4H), 4.98 (s, 2H), 5.54 (brs, 1H), 6.39 (brs, 1H), 6.63 (d, J = 2.0 Hz, 1H), 6.94 (d, J = 2.0 Hz, 1H), 7.15 (dd, J = 10.8, 8.4 Hz, 1H), 7.38–7.29 (m, 3H), 7.48–7.42 (m, 1H), 7.52–7.48 (m, 2H), 7.86 (dd, J = 7.2, 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 12.9 (CH), 17.9 (CH₃), 30.2 (CH₂), 34.8 (CH₂), 35.2 (CH₂), 35.4 (CH₂), 37.2 (CH₂), 40.5 (CH_2) , 74.4 (CH_2) , 118.0 (C), 118.3 (d, J = 6.2 Hz, CH), 119.7 (CH), 125.1 (CH), 125.3 (d, J = 2.9 Hz, CH), 127.8 (CH), 128.0 (CH), 128.1 (CH), 135.5 (C), 135.6 (d, *J* = 5.1 Hz, CH), 136.0 (d, C), 136.9 (C), 137.8 (d, J = 4.3 Hz, C), 145.4 (C), 150.3 (C), 153.8 (d, J = 260.9 Hz, C), 171.0 (C), 171.4 (C); HRMS (FAB) foundm/z 744.2478 [M + H]⁺, C₃₆H₄₈O₆N₃FSiBr requires 744.2478.

4-(Benzyloxy)-3-bromo-5-hydroxybenzaldehyde (21). Li₂CO₃ (85 mg, 1.2 mmol) was added to a solution of 3-bromo-4,5dihydroxybenzaldehyde **20** (100 mg, 0.46 mmol) in DMF (2 mL). This solution was vigorously stirred and heated (45 °C, 1 h) followed by dropwise addition of benzyl bromide (0.14 mL, 1.2 mmol). After 45 min, the reaction was quenched with HCl (aq, 1 N) resulting in precipitation of the crude product **21**. The precipitate was filtered, washed with water, dried under high vacuum, and purified by flash chromatography (SiO₂, CH₂Cl₂/hexane, 9:1) to yield **21** (125 mg, 88%) as a pale yellow solid: mp 92–93 °C; IR (NaCl, neat) ν 3235, 1683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.14 (s, 2H), 5.85 (s, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.38–7.46 (m, 5H), 7.63 (d, J = 2.0 Hz, 1H), 9.79 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 76.1 (CH₂), 115.5 (CH), 117.0 (C), 126.7 (CH), 128.6 (CH), 129.0 (CH), 129.2 (CH), 133.9 (C), 148.3 (C), 150.9 (C), 190.0 (CH); HRMS (DCI/NH₃) found m/z 306.9963 [M + H]⁺, C₁₄H₁₂O₃Br requires 306.9969.

4-Benzyloxy-3-bromo-5-hydroxycinnamic Acid (22). Pyridine (0.55 mL, 6.8 mmol) and piperidine (0.16 mL, 1.62 mmol) were added to a solution of 4-benzyloxy-3-bromo-5-hydroxybenzaldehyde 21 (2.0 g, 6.5 mmol) and malonic acid (0.7 g, 6.8 mmol) in toluene (100 mL) within a round-bottom flask equipped with a Dean Stark trap and heated under reflux for 5h. The reaction was quenched with HCl (1 N, 300 mL) resulting in precipitation of 22. This compound was collected and washed with water and dried under high vacuum to provide 22 (2.0 g, 88%) as a colorless solid: mp 173–174 °C; IR (NaCl, neat) ν 3249, 1650, 1633, 1616 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.09 (s, 2H), 6.3 (d, J = 15.9 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1 H), 7.29 (d, J = 1.8 Hz, 1H), 7.38-7.44 (m, 5H), 7.57 (d, J = 15.9 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃/drop of DMSO) & 74.9 (CH₂), 114.9 (CH), 117.5 (C), 118.7 (CH), 123.9 (CH), 128.3 (CH), 128.4 (CH), 128.5 (CH), 131.9 (C), 136.5(C), 143.3 (CH), 145.2 (C), 151.1 (C), 169.0 (C); HRMS (DCI/NH₃) found *m*/*z* 349.0087 [M]⁺, C₁₆H₁₄O₄Br requires 349.0075.

Ethyl (4-Benzyloxy)-3-bromo-5-(ethoxycarbonyloxy)styrylcarbamate (23). Diisopropylethylamine (1.4 mL) was added dropwise to a chilled solution (-10 °C) of 4-benzyloxy-5-bromo-3-hydroxy-cinnamic acid 22 (1.00 g) dissolved in acetone (40 mL), followed by the dropwise addition of ethylchloroformate (0.6 mL). After stirring for 2 h (-10 °C), a chilled aqueous solution of sodium azide (560 mg, 10 mL H₂O) was added dropwise to the reaction. After stirring for 5 h at 0 °C, the solution was extracted with CH₂Cl₂ $(3 \times 100 \text{ mL})$. Extracts were combined, dried over anhydrous MgSO₄, filtered, and volatiles were removed to give a colorless solid. The resulting solid was azeotroped dried with toluene (3 \times 20 mL). Ethanol (5 mL) and toluene (50 mL) were added and this solution was heated to 80 °C for 12 h. The volatiles were removed to give crude 23 that was purified by flash chromatography (SiO_2 , CH₂Cl₂/EtOAc, 98:2) to yield 23 (0.89 g, 66%) as an amber viscous oil: IR (NaCl, neat) v 3324, 2981, 1766, 1729, 1660 1525, 1475, 1257, 1224 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, J = 7.2Hz, 6H), 4.21 (q, J = 7.2 Hz, 4H), 4.98 (s, 2H), 5.80 (d, J = 14.4Hz, 1H,), 6.53 (d, J = 10.4 Hz, 1H,), 7.02 (d, J = 2.0 Hz, 1H), 7.14 (dd, J = 14.4, 10.4 Hz, 1H,), 7.5–7.3 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 14.5 (CH₃), 61.8 (CH₂), 65.2 (CH₂), 75.6 (CH₂), 107.7 (CH), 118.3 (C), 118.7 (CH), 125.6 (CH), 127.5 (CH), 128.2 (CH), 128.3 (CH), 128.4 (CH), 134.5 (C), 136.4 (C), 145.3 (C), 146.3 (C), 152.9 (C), 153.5 (C); HRMS (DCI/NH₃) found m/z 463.0614 [M]⁺, C₂₁H₂₂O₆NBr requires 463.0630.

Carbonic acid 2-benzyloxy-3-bromo-5-(2-methoxycarbonylamino-vinyl)-phenyl ester methyl ester: IR (KBr, neat) ν 3336, 2956, 1770, 1734, 1660, 1477, 1261, 943 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.73 (s, 3H), 3.80 (s, 3H), 4.98 (s, 2H), 5.75 (d, J = 14.0 Hz, 1H), 6.87 (bd, J = 11.0 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 7.11 (bd, J = 11.0 Hz, 1H), 7.3–7.5 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 52.7 (CH₃), 55.7 (CH₃), 75.6 (CH₂), 107.8 (CH), 118.2 (C), 118.5 (CH), 125.5 (CH), 127.4 (CH), 128.1 (CH), 128.2 (2CH), 134.3 (C), 136.3 (C), 145.1 (C), 146.0 (C), 153.4 (C), 153.8 (C); HRMS (DCI/NH₃) found m/z 349.0087 [M]⁺, C₁₆H₁₄O₄Br requires 349.0075.

Carbonic Acid 2-Benzyloxy-3-bromo-5-(2-methoxycarbonylamino-ethyl)-phenyl Ester Ethyl Ester (24). Triethylsilane (265 uL, 1.67 mmol) was added to 23 (50 mg, 0.17 mmol), and the resulting heterogeneous mixture was rapidly stirred (-10 °C). Chilled (-10 °C) neat trifluoroacetic acid (1 mL) was rapidly transferred via cannula to the reaction mixture. The heterogeneous mixture was allowed to rapidly stir for 20 min. The reaction was quenched with a NaHCO₃ (aq, satd) and was extracted with CH₂Cl₂ $(4 \times 25 \text{ mL})$. The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to provide 24 as a viscous oil (47 mg, 94%): IR (NaCl, neat) v 3343, 2956, 1770, 1722, 1481, 1257 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.75 (t, J = 7.0 Hz, 2H), 3.40 (dt, J = 7.0, 7.0 Hz, 2H), 3.65 (s, 3H), 3.80 (s, 3H), 4.74 (brs, 1H), 4.98 (s, 2H), 6.96 (d, J = 2.0 Hz, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.32–7.5 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) & 35.2 (CH₂), 41.8 (CH₂), 52.1 (CH₃), 55.7 (CH₃), 75.5

(CH₂), 118.0 (C), 122.4 (CH), 128.1 (CH), 128.2 (2CH), 131.0 (CH), 136.2 (C), 136.4 (C), 144.9 (C), 146.6 (C), 153.3 (C), 156.7 (C); HRMS (DCI/NH₃) found m/z 466.0864 [M + H]⁺, C₂₁H₂₅O₆-NBr requires 466.0865.

3-(4-Fluoro-3-nitro-phenyl)-propionic Acid Methyl Ester (26). In a glovebox, olefin 25 (300 mg, 1.3 mmol) and Wilkinson's catalyst (44 mg, 0.05 mmol) were dissolved in toluene (25 mL) in a pressure vessel. The vessel was removed from the glovebox and purged with H₂ and pressurized with H₂ (3 atm). The mixture was rapidly stirred and heated (60 °C). After 8 h, the toluene was removed resulting in a brown residue that was passed through a flash column (SiO₂, EtOAc/CH₂Cl₂, 1:50) to provide 26 as an amorphous solid (290 mg, 95%): IR (NaCl, neat) v 2954, 1735, 1537, 1349 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J =7.2, 2.4 Hz, 1H), 7.45 (m, 1H), 7.17 (dd, J = 10.0, 8.4 Hz, 1H), 3.63 (s, 3H), 2.97 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2 (s, C), 153.9 (d, J = 348Hz, C), 137.4 (d, J = 5.7 Hz, C) 136.8 (brs, C), 135.5 (d, J = 11Hz, CH), 125.4 (d, J = 3.8 Hz, CH), 118.2 (d, J = 28 Hz, CH), 51.8 (s, CH₃), 34.9 (s, CH₂), 29.6 (s, CH₂); HRMS (EI) found *m/z* 227.0601 [M]⁺, C₁₀H₁₀FNO₄ requires 227.0593.

4-Benzyloxy-5-bromo-16-nitro-2-oxa-11-aza-tricyclo[12.2.2.1%]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-10-one (27). K₂CO₃ (500 mg, 3.6 mmol) was added to a solution of phenol 18 (100 mg, 0.19 mmol) in DMSO (100 mL, 2 mM) containing 4 Å sieves at room temperature. After 3 h of vigorous stirring, the reaction mixture was diluted with water (100 mL) and extracted with EtOAc $(5 \times 20 \text{ mL})$. The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to provide crude 27 that was purified by flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) yielding 27 (86 mg, 85%) as a viscous oil: IR (NaCl, neat) ν 3272, 2933, 1639, 1531, 1346 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.2–2.5 (m, 3H), 3.0–3.4 (m, 5H), 5.05 (d, J = 1.6 Hz, 1H), 5.15 (d, J = 10.4 Hz, 1H), 5.30 (d, J = 10.4 Hz, 1H), 5.34 (brs, 1H), 6.86 (d, J = 1.6 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.3-7.4 (m, 3H), (dd, J = 8.4, 2.0 Hz, 1H), 7.6–7.62 (m, 2H), 7.92 (d, J= 2.0 Hz); 13 C NMR (100 MHz, CDCl₃) δ 30.3 (CH₂), 31.5 (CH₂), 39.6 (CH₂), 39.9 (CH₂), 75.2 (CH₂), 113.2 (CH), 117.8 (C), 126.3 (CH), 126.4 (CH), 127.4 (CH), 128.2 (CH), 128.3 (CH), 128.6 (CH), 136.8 (C), 136.8 (CH), 137.3 (C), 140.5 (C), 142.6 (C), 143.9 (C), 149.4 (C), 155.2 (C), 171.0 (C); HRMS (DEI) found m/z 496.0624 $[M]^+$, $C_{24}H_{21}N_2O_5Br$ requires 496.0634.

17-Amino-4-benzyloxy-5-bromo-2-oxa-10-aza-tricyclo[12.2.2.10,0]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (28). CrCl₂ (110 mg, 0.89 mmol) was added to a solution of lactam 27 (34 mg, 0.07 mmol) in DMF (1 mL) and the mixture stirred at room temperature. After 12 h, the volatiles were removed to give a residue that was dissolved in EtOAc (10 mL). The organic solution was washed with brine and dried (Na₂SO₄), and the volatiles were removed to give crude 28 that was purified by flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) yielding **28** (23 mg, 73%) as a viscous gum: IR (NaCl, neat) v 3291, 2927, 1639, 1504, 1270, 1187 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.2–2.3 (m, 2H), 2.6–2.7 (m, 2H), 2.8-2.9 (m, 2H), 3.2-3.3 (m, 2H), 4.85 (brs, 1H), 5.17 (d, J =10.4 Hz, 1H), 5.27 (d, J = 10.4 Hz, 1H), 5.41 (s, 1H), 6.63 (brd, J = 7.2 Hz, 1H), 6.79 (d, J = 7.2 Hz, 1H), 6.88 (s, 1H), 7.3–7.4 (m, 3H), 7.5-7.6 (m, 2H), 7.99 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) & 30.4 (CH₂), 32.2 (CH₂), 39.4 (CH₂), 41.1 (CH₂), 75.3 (CH₂), 113.8 (CH), 117.6 (CH), 120.0 (CH), 124.5 (CH), 125.7 (CH), 128.3 (CH), 128.4 (CH), 128.8 (CH), 136.4 (C), 136.9 (C), 140.0 (C), 141.0 (C), 142.4 (C), 142.7 (C), 154.6 (C), 171.9 (C); HRMS (DEI) found m/z 466.0908 [M]⁺, C₂₄H₂₃N₂O₃Br requires 466.0892

5,17-Dibromo-4-benzyloxy-2-oxa-10-aza-tricyclo[12.2.2.1^{0,0}]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (29). *tert*-Butyl nitrite (20 μ L, 17 μ mol) was added to a solution of CuBr₂ (3 mg, 14 μ mol) in CH₃CN (0.2 mL) at 0 °C. After stirring for 1 h, a heterogeneous mixture of lactam 28 (8 mg, 17 μ mol) in CH₃CN (0.8 mL) was added dropwise over 20 min at 0 °C. After stirring for 2 h, the solution was allowed to warm to room temperature, quenched with HCl (1 N, 4 mL), and extracted with CH₂Cl₂ (4 ×

5 mL). The organic layers were combined, washed with brine, and dried (Na_2SO_4), and the volatiles were removed to give crude 29. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb 10 \times 250 mm, MeOH/ H₂O, 65: 35, 3 mL/min) gave 29 (6 mg, 66%) as a colorless amorphous solid: IR (NaCl, neat) v 3286, 2928, 1640, 1480, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.2-2.4 (m, 2H), 2.6-2.7 (m, 2H), 2.9-3.1 (m, 2H), 3.2-3.4 (m, 2H), 4.90 (brs, 1H), 5.06 (d, J = 2.0 Hz, 1H), 5.18 (d, J = 10.4 Hz, 1H), 5.34 (d, J = 10.4Hz, 1H), 6.88 (dd, J = 2.0, 1.2 Hz, 1H), 7.05 (d, 8.4 Hz, 1H), 7.23 (dd, J = 8.4, 2.4 Hz, 1 H), 7.3-7.4 (m, 3H), 7.51 (d, J = 2.4 Hz)1H), 7.6–7.5 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.5 (CH₂), 31.7 (CH₂), 39.7 (CH₂), 41.0 (CH₂), 75.2 (CH₂), 113.1 (CH), 117.9 (C), 118.7 (CH), 125.8 (CH), 125.9 (CH), 128.2 (CH), 128.4 (CH), 128.8 (CH), 130.4 (CH), 134.6 (C), 136.4 (C), 137.0 (C), 140.6 (C), 142.8 (C), 152.9 (C), 154.6 (C), 171.1 (C); HRMS (DEI) found m/z 532.9852 [M]⁺, C₂₄H₂₁NO₃Br₂ requires 532.9847.

4-Benzyloxy-5,15,17-tribromo-2-oxa-10-azatricyclo[12.2.2.1^{0,0}]nonadeca-1 (17),3(19),4,6,14,(18),15-hexaene-11-one (30). tert-Butyl nitrite (12 μ L, 0.09 mmol) was added to a solution of CuBr₂ (56 mg, 0.25 mmol) in CH₃CN (0.5 mL) was added at 0 °C. After stirring for 1 h, a heterogeneous mixture of lactam 28 (12 mg, 0.03 mmol) in CH₃CN (0.8 mL) was added dropwise over 20 min at 0 °C. After stirring for 2 h, the mixture was allowed to warm to room temperature and quenched with HCl (1 N, 4 mL) and extracted with EtOAc (4×5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **30**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb, 10 \times 250 mm, MeOH/H₂O, 75:25, 3 mL/min) gave 30 (5 mg, 32%) as a colorless amorphous solid: IR (NaCl, neat) v 3273, 2928, 1638, 1463, 1218 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.2–2.8 (m, 4H), 3.0-3.5 (m, 4H), 4.93 (bd, J = 7.2 Hz, 1H), 5.16 (d, J = 10.4 Hz, 1H), 5.31 (d, J = 10.4 Hz, 1), 6.92 (d, J = 2.0 Hz, 1H), 7.25 (s, 1H), 7.3–7.4 (m, 3H), 7.55 (s, 1H), 7.59–7.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.5 (CH₂), 32.1 (CH₂), 37.1 (CH₂), 39.7 (CH₂), 75.3 (CH₂), 112.9 (CH), 118.1 (C), 118.7 (C), 122.7 (C), 126.2 (CH), 128.3 (CH), 128.4 (CH), 128.8 (CH), 129.4 (CH), 136.5 (CH), 136.7 (C), 136.8 (C), 139.3 (C), 142.7 (C), 153.2 (C), 154.1 (C), 170.9 (C); HRMS (DEI) found m/z 606.9021 [M]⁺, C₂₄H₂₀-NO₃Br₃ requires 606.8993.

4-Benzyloxy-5-bromo-2-oxa-10-aza-tricyclo[12.2.2.1%]nonadeca-1(17),3(19),4,6,14(18),15-hexaen-11-one (31). tert-Butyl nitrite (40 µL, 0.34 mmol) was added to THF (0.3 mL) at 0 °C. After stirring for 1 h, a heterogeneous mixture of lactam 28 (10 mg, 0.02 mmol) in THF (0.4 mL) was added dropwise over 20 min at 0 °C. After stirring for 2 h, the solution was allowed to warm to room temperature, quenched with HCl (1 N, 4 mL), and extracted with EtOAc (4 \times 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **31**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb, 10 \times 250 mm, MeOH/H₂O, 65:35, 3 mL/min) gave **31** (3.8 mg, 39%) as a colorless powder: IR (NaCl, neat) v 3286, 2925, 1640, 1567, 1501, 1202 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.26–2.29 (m, 2H), 2.58–2.62 (m, 2H), 3.00–3.04 (m, 2H), 3.24–3.28 (m, 2H), 4.77 (brs, 1H), 5.03 (d, J = 2.4 Hz, 1H), 5.22 (s, 2H), 6.83 (d, J= 2.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.30-7.42 (m, 3H), 7.59-7.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 30.5 (CH₂), 32.0 (CH₂), 39.6 (CH₂), 41.2 (CH₂), 75.2 (CH₂), 114.6 (CH), 117.6 (C), 124.4 (CH), 125.0 (CH), 128.1 (CH), 128.3 (CH), 128.7 (CH), 130.8 (CH), 135.9 (C), 136.8 (C), 138.7 (C), 142.2 (C), 156.3 (C), 156.6 (C), 171.4 (C); HRMS (DEI) found *m*/*z* 451.0795 [M]⁺, C₂₄H₂₂NO₃Br requires 451.0783.

[2-(4-Benzyloxy-3-bromo-5-hydroxy-phenyl)-ethyl]-carbamic Acid *tert*-Butyl Ester (32). Phenethylamine 16, (28 mg, 86 μ mol) was dissolved in CH₃CN (0.75 mL) and was treated with a solution of di-*tert*-butyl dicarbonate (46 mg, 210 μ mol) in CH₃CN (0.25 mL). After 3 h, the volatiles were removed and the resulting residue was redissolved in MeOH (0.5 mL), water (0.2 mL), and treated with sodium carbonate (50 mg). After stirring 12 h, the solution was extracted with CH₂Cl₂ (4 × 25 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to yield **32** as an oil (28 mg, 76%): IR (NaCl, neat) ν 3359, 2977, 1685, 1500, 1367, 1166 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 2.65 (bt, J = 4.8 Hz, 2H), 3.31 (bd, 2H), 4.59 (bs, 1H), 5.01 (s, 2H), 5.94 (bs, 1H), 6.69 (bs, 1H), 6.90 (bs, 1H), 7.3–7.5 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 28.3 (CH₃), 35.4 (CH₂), 41.4 (CH₂), 79.4 (C), 115.5 (CH), 116.3 (C), 124.6 (CH), 128.5 (CH), 128.7 (CH), 128.7 (CH), 136.4 (C), 137.3 (C), 141.8 (C), 150.2 (C), 155.9 (C); HRMS (DCI/NH₃) found m/z 439.1221 [M + NH₄]⁺, C₂₀H₂₈O₄N₂Br requires 439.1232.

{2-[4-Benzyloxy-3-bromo-5-(triisopropyl-silanyloxy)-phenyl]ethyl}-carbamic Acid tert-Butyl Ester (33). TIPSCl (75 µL, 0.35 mmol) was added to a solution of amide 32 (122 mg, 0.299 mmol) and imidazole (50 mg, 0.72 mmol) in DMF (0.5 mL). The yellow solution was stirred overnight at room temperature, quenched with water, and extracted with EtOAc (3×20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 33. Flash chromatography (SiO₂, CH₂Cl₂) gave 33 (164 mg, 95%) as an oil: IR (NaCl, neat) ν 3434, 3359, 2944, 2867, 1718, 1477, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, J = 7.6 Hz, 18H), 1.27 (sept, J = 7.6, 3H), 1.42 (s, 9H), 2.65 (t, J = 6.4, 2H), 3.36–3.29 (m, 2H), 4.49 (brs, 1H), 4.98 (s, 2H), 6.64 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 7.40-7.30 (m, 3H), 7.53-7.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.0 (CH), 18.0 (CH₃), 28.4 (CH₃), 74.4 (CH₂), 79.2 (C), 35.5 (CH₂), 41.6 (CH₂), 118.4 (C), 119.9 (CH), 125.3 (CH), 127.8 (CH), 128.0 (CH), 128.1 (CH), 136.0 (C), 137.0 (C), 145.4 (C), 150.2 (C), 155.6 (C); HRMS (FAB) found m/z 600.2131 $[M + Na]^+$, $C_{29}H_{44}O_4NNaSiBr$ requires 600.2121.

2-[4-Benzyloxy-3-bromo-5-(triisopropyl-silanyloxy)-phenyl]ethylamine (34). TFA (1.0 mL) was added to a solution of carbamate 33 (142 mg, 0.246 mmol) in CH_2Cl_2 (1.0 mL). The solution was stirred for 0.5 h at 0 °C, quenched with NaHCO₃ (aq, satd), and extracted with CH_2Cl_2 (3 × 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to yield 34 (112 mg, 95%) as an oil: IR (NaCl, neat) v 2944, 2867, 1556, 1475 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, J = 7.2 Hz, 18H), 1.27 (sept, J = 7.2 Hz, 3H), 2.62 (t, J = 6.8 Hz, 2H), 2.92 (bt, J = 6.8 Hz, 2H), 4.98 (s, 2H), 6.66 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 7.40–7.25 (m, 3H), 7.55–7.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.0 (CH), 18.0 (CH₃), 39.1 (CH₂), 43.3 (CH₂), 74.4 (CH₂), 118.3 (C), 119.9 (CH), 125.3 (CH), 127.7 (CH), 128.0 (CH), 128.1 (CH), 136.6 (C), 137.1 (C), 145.2 (C), 150.2 (C); HRMS (DCI/NH₃) found m/z 478.1759 $[M + H]^+$, C₂₄H₃₇O₂NSiBr requires 478.1777.

(2-{2-[4-Benzyloxy-3-bromo-5-(triisopropyl-silanyloxy)-phenyl]-ethylcarbamoyl}-ethyl)-carbamic Acid tert-Butyl Ester (35). EDCI (88 mg, 0.460 mmol) was added to a solution of amine 34 (110 mg, 0.23 mmol), HOBt (62 mg, 0.46 mmol), and N-Boc-βalanine (65 mg, 0.35 mmol) in CH₂Cl₂ (1.0 mL). The solution was stirred overnight at room temperature, quenched with HCl (1 N), and extracted with CH_2Cl_2 (3 × 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 34. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 20:1) gave 34 (138 mg, 92%) as an oil: IR (NaCl, neat) ν 3315, 2945, 2867, 1691, 1558, 1477 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, J = 7.2 Hz, 18H), 1.26 (sept, J = 7.2 Hz, 3H), 1.41 (s, 9H), 2.34 (t, J = 6.0 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2H), 3.37 (dt, J = 6.0, 6.0 Hz, 2H), 3.44 (dt, J = 7.2, 6.0 Hz, 2H), 4.99 (s, 2H), 5.16 (bs, 1H), 5.73 (bs, 1H), 6.64 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 7.40–7.29 (m, 3H), 7.52–7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.8 (CH), 17.8 (CH₃), 28.3 (CH₃), 34.8 (CH₂), 36.1 (CH₂), 36.5 (CH₂), 40.4 (CH₂), 74.3 (CH₂), 79.2 (C), 118.5 (C), 119.7 (CH), 125.2 (CH), 127.9 (CH), 128.1 (CH), 128.2 (CH), 135.8 (C), 137.0 (C), 145.6 (C), 150.4 (C), 156.1 (C), 171.3 (C); HRMS (FAB) found m/z 671.2512 [M + Na]⁺, C₃₂H₄₉O₅N₂NaSiBr requires 671.2492.

3-Amino-*N*-{**2-**[**4-Benzyloxy-3-bromo-5-**(**triisopropyl-silanyl-oxy)-phenyl**]-**ethyl-propionamide** (**36**). TFA (1.0 mL) was added to a solution of carbamate **35** (136 mg, 0.209 mmol) in CH₂Cl₂

(1.0 mL) at room temperature. The solution was stirred for 0.5 h at 0 °C, quenched with NaHCO₃ (aq, satd), and extracted with CH₂Cl₂ (3 × 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to yield **36** (112 mg, 97%) as a oil: IR (NaCl, neat) ν 3315, 2945, 2867, 1691, 1646, 1558, 1477 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, J = 7.2 Hz, 18H), 1.27 (sept, J = 7.2 Hz, 3H), 2.29 (bs, 2H), 2.68 (t, J = 6.8 Hz, 2H), 2.97 (bs, 2H), 3.44 (dt, J = 6.8, 6.4 Hz, 2H), 4.99 (s, 2H), 6.65 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 7.08 (bs, 1H), 7.40–7.28 (m, 3H), 7.52–7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.8 (CH), 17.9 (CH₃), 28.3 (CH₂), 34.9 (CH₂), 37.9 (CH₂), 40.2 (CH₂), 74.4 (CH₂), 118.3 (C), 119.8 (CH), 125.4 (CH), 127.9 (CH), 128.1 (CH), 128.2 (CH), 136.2 (C), 137.1 (C), 145.5 (C), 150.4 (C), 172.4 (C); HRMS (FAB) found *m*/z 549.2142 [M + H]⁺, C₂₇H₄₂O₃N₂NaSiBr requires 549.2148.

4-Benzyloxy-5-bromo-21-nitro-20xa-10,14-diaza-tricyclo-[16.2.2.1^{0,0}]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (37). CsF (43 mg, 0.29 mmol) was added to a solution of amide 19 (102 mg, 0.140 mmol) and 4 Å sieves in DMSO (75 mL, 2 mM). The solution was rapidly stirred overnight at room temperature, quenched with water, and extracted with CH_2Cl_2 (5 × 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **37**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 20:1) gave 37 (65 mg, 84%) as an oil. IR (NaCl, neat) v 3299, 2931, 1647, 1533 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.12–2.16 (m, 2H), 2.33– 2.40 (m, 2H), 2.63-2.69 (m, 2H), 3.05-3.08 (m, 2H), 3.28-3.37 (m, 2H), 3.46–3.52 (m, 2H), 5.14 (s, 2H), 5.36 (brs, 1H), 5.96 (d, J = 1.8 Hz, 1H), 6.22 (brs, 1H), 7.04 (d, J = 1.8 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.30–7.38 (m, 3H), 7.45 (dd, J = 8.4 Hz, 2.1 Hz), 7.54-7.58 (m, 2H), 7.82 (d, J = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 31.2 (CH₂), 33.6 (CH₂), 33.8 (CH₂), 35.3 (CH₂), 38.9 (CH₂), 40.8 (CH₂), 75.3 (CH₂), 115.0 (CH), 118.9 (C), 124.6 (CH), 125.8 (CH), 127.1 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 135.2 (CH), 136.6 (C), 136.7 (C), 139.6 (C), 142.6 (C), 143.8 (C), 146.0 (C), 152.0 (C), 170.8 (C), 172.0 (C); HRMS (FAB) found m/z 568.1061 [M + H]⁺, C₂₇H₂₇N₃O₆Br requires 568.1083.

21-Amino-4-benzyloxy-5-bromo-2-oxa-10,14-diaza-tricyclo-[16.2.2.1^{0,0}]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (38). CrCl₂ (80 mg, 0.65 mmol) was added to a solution of lactam 37 (40 mg, 0.07 mmol) in DMF (1 mL) at room temperature. After 12 h of stirring, the DMF was removed under reduced pressure followed by dissolving the residue in EtOAc (10 mL). The organic solution was washed with brine and dried (Na₂SO₄), and the volatiles were removed to give crude 38. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) gave **38** (21 mg, 55%) as a yellow viscous oil: IR (NaCl, neat) v 3320, 2928, 1644, 1479, 1196 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.10-2.14 (m, 2H), 2.38-2.63 (m, 2H), 2.60-2.63 (m, 2H), 2.84-2.87 (m, 2H), 3.25-3.27 (m, 2H), 3.40-3.43 (m, 2H), 5.16 (s, 2H), 6.21 (d, J = 2.0 Hz, 1H), 6.60 (dd, J = 8.0, 2.0 Hz, 1H), 6.75 (d, J = 8.0, 2.0 Hz, 1H), 6.75(d, J = 2.0 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1)1H), 7.30–7.39 (m, 3H), 7.55–7.58 (m, 2H), 7.62 (bt, J = 6.0Hz, 1H), 7.74 (bt, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 32.8 (CH₂), 34.5 (CH₂), 35.2 (CH₂), 36.3 (CH₂), 39.5 (CH₂), 42.1 (CH₂), 76.4 (CH₂), 117.2 (CH), 119.0 (CH), 119.1 (C), 120.8 (CH), 123.0 (CH), 127.2 (CH), 129.3 (CH), 129.4 (CH), 129.8 (CH), 138.4 (C), 139.1 (C), 140.1 (C), 140.2 (C), 141.8 (C), 144.7 (C), 153.4 (C), 173.8 (C), 174.9 (C); HRMS (DCI/NH₃) found m/z 538.1330 $[M + H]^+$, $C_{27}H_{29}O_4N_3Br$ requires 466.0865.

4-Benzyloxy-5,21-dibromo-2-oxa-10,14-diaza-tricyclo[16.2.2.1^{0,0}]**tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (39).** *tert*-Butyl nitrite (10 μ L, 9 μ mol) was added to a solution of CuBr₂ (2.5 mg, 10 μ mol) in CH₃CN (0.5 mL) at 0 °C and allowed to stir for 1 h. A mixture of lactam **38** (10 mg, 0.02 mmol) in CH₃CN (0.8 mL) was then added dropwise into the above solution over 20 min at 0 °C. After stirring for 2 h, the solution was allowed to warm to room temperature, quenched with HCl (1 N, 4 mL) and extracted with CH₂Cl₂ (4 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **39**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb, 10 × 250 mm, MeOH/H₂O, 65:35, 3 mL/min) gave **39** (2.7 mg, 21%) as a colorless amorphous solid: ¹H NMR (400 MHz, CD₃OD) δ 2.15–2.13 (m, 2H), 2.45–2.41 (m, 2H), 2.66–2.63 (m, 2H), 2.98–2.95 (m, 2H), 3.27–3.23 (m, 2H), 3.44–3.36 (m, 2H), 5.18 (s, 2H), 6.05 (d, *J* = 1.6 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 1.6 Hz, 1H), 7.24 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.32–7.40 (m, 3H), 7.54–7.57 (m, 3H); HRMS (FAB) found *m*/*z* 601.0312 [M + H]⁺, C₂₇H₂₇O₄N₂Br₂ requires 601.0338.

4-Benzyloxy-5,20,22-tribromo-2-oxa-10,14-diaza-tricyclo-[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19-hexaene-11,15-dione (40). tert-Butyl nitrite (3.6 µL, 0.04 mmol) was added to a solution of CuBr₂ (14 mg, 0.06 mmol) in CH₃CN (0.5 mL) at 0 °C and allowed to stir for 1 h. A mixture of lactam 38 (11 mg, 0.02 mmol) in CH₃CN (0.5 mL) was added dropwise into the above solution over 20 min at 0 °C. After stirring for 2 h, the solution was warmed to room temperature, quenched with HCl (1 N, 4 mL), and extracted with CH_2Cl_2 (4 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 40. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by reversed phase HPLC (C₁₈, 5 μ m Microsorb, 10×250 mm, MeOH/H₂O, 70:30, 3 mL/min) gave 40 (4 mg, 29%) as a colorless amorphous solid: IR (neat) ν 3307, 2925, 1648 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.94–2.02 (m, 1H), 2.09-2.16, (m, 1H), 2.31-2.36 (m, 1H), 2.55-2.63 (m, 2H), 2.73-2.81 (m, 2H), 3.08-3.19 (m, 2H), 3.81-3.86 (m, 1H), 3.96-4.02 (m, 3H), 5.23 (d, J = 10.8 Hz, 1H), 5.24 (bs, 1H), 5.28 (d, J= 10.8 Hz, 1H), 5.85 (d, J = 2.0 Hz, 1H), 6.18 (bd, J = 6.8 hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 7.32–7.40 (m, 3H), 7.34 (s, 1H), 7.56–7.59 (m, 2H), 7.58 (s, 1H); 13 C NMR (100 MHz, CDCl₃) δ 31.4 (CH₂), 33.7 (CH₂), 33.9 (CH₂), 35.6 (CH₂), 36.9 (CH₂), 41.5 (CH₂), 75.1 (CH₂), 114.6 (CH), 115.1 (C), 119.0 (C), 123.2 (C), 126.4 (CH), 128.3 (CH), 128.4 (CH), 128.6 (2 × CH), 135.6 (CH), 136.5 (C), 136.8 (C), 139.6 (C), 143.4 (C), 149.9 (C), 151.7 (C), 171.1 (C), 171.9 (C); LRMS (ESI) found m/z 701.1 [M + Na]⁺, $C_{27}H_{25}N_2O_4Br_3$ requires 700.9.

S-(-)-(6-{2-[4-Benzyloxy-3-bromo-5-(triisopropyl-silanyloxy)phenyl]-ethylcarbamoyl}-5-tert-butoxycarbonylamino-hexyl)carbamic Acid 9H-Fluoren-9-ylmethyl Ester (42). A stirred solution of amine 34 (102 mg, 0.213 mmol) and acid 41^{36} (108 mg, 0.224 mmol) in CH₂Cl₂ (2 mL) was treated with HOBt (58 mg, 0.426 mmol) and EDCI (81 mg, 0.426 mmol) at room temperature. After 3 h, the reaction was quenched with HCl (0.5 N) and extracted with EtOAc (3 \times 10 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 42. Flash chromatography $(SiO_2, CH_2Cl_2/MeOH 5\%)$ gave **42** (163 mg, 81%) as an oil: $[\alpha]^{25}D$ -3.1° (c 0.75, CHCl₃); IR (neat) v 3313, 2944, 2867, 1687, 1641, 1538 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, J = 7.2 Hz, 18H), 1.20-1.34 (m, 4H), 1.41(s, 9H), 2.31-2.43 (m, 2H), 2.66 (dd, J = 6.8 Hz, 2H), 2.85-3.15 (m, 2H), 3.29-3.49 (m, 2H),3.80-3.90 (m, 1H), 4.19 (dd, J = 7.2 Hz, 1H), 4.35 (d, J = 8.4Hz, 2H), 4.65 (bs, 1H), 4.99 (s, 2H), 5.87 (bd, J = 8.0 Hz, 1H), 6.18 (bs, 1H), 6.65 (d, J = 1.6 Hz, 1H), 6.94 (d, J = 1.6 Hz, 1H), 7.28-7.37 (m, 8H), 7.51 (d, J = 7.2 Hz, 4H), 7.58 (d, J = 7.2 Hz, 4H), 7.73 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 12.8 (CH), 17.8 (CH₃), 23.1 (CH₂), 28.3 (CH₂), 29.6 (CH₂), 33.7 (C), 34.8 (CH₂), 39.9 (CH₂), 40.4 (CH₂), 40.5 (CH₂), 47.1 (CH), 48.6 (CH), 66.5 (CH₂), 74.3 (CH₂), 79.0 (C), 118.4 (C), 119.7 (CH), 119.9 (CH), 125.0 (CH), 125.3 (CH), 126.9 (CH), 127.6 (CH), 127.8 (CH), 128.1 (CH), 135.8 (C), 137.1 (C), 141.2 (C), 143.9 (C), 143.9 (C), 145.6 (C), 150.4 (C), 156.1 (C), 156.1 (C), 170.9 (C); HRMS (MALDI) found m/z 964.3905 [M + Na]⁺, C₅₁H₆₈N₃O₇BrSiNa requires 964.3902.

S-(-)-{6-{2-[4-Benzyloxy-3-bromo-5-(triisopropyl-silanyloxy)phenyl]-ethylcarbamoyl}-5-{3-(4-fluoro-3-nitro-phenyl)-propionylamino]-hexyl}-carbamic Acid *tert*-Butyl Ester (44). A stirred solution of amine 42 (72 mg, 0.076 mmol) in CH₂Cl₂ (1 mL) was treated with tris(2-amino-ethyl)-amine (TAEA) (0.57 mL, 3.81 mmol) at room temperature. After 5 min, the reaction was quenched with NaCl (sat.) and extracted with CH₂Cl₂ (10 mL).

The organic layers were combined, washed with brine (3×20) mL), phosphate buffer (pH = 5.5) (3×20 mL), and dried (Na₂SO₄), and the volatiles were removed to give crude amine 43. The crude amine 43 was carried forward without further purification. A stirred solution of amine 43 (55 mg, 0.076 mmol) and acid 17 (96 mg, 0.45 mmol) in CH₂Cl₂ (3 mL) was treated with HOBt (120 mg, 0.92 mmol) and EDCI (180 mg, 0.92 mmol) at room temperature. After 6 h, the reaction was quenched with HCl (0.5 N) and extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined, washed with KOH (0.5 N) (3 \times 30 mL), and brine, and dried (Na₂SO₄), and the volatiles were removed to give crude amide 44. Flash chromatography (SiO₂, CH₂Cl₂/EtOAc 20% then CH₂Cl₂/ MeOH 5%) gave 44 (60 mg, 86%) as an amorphous solid: $[\alpha]^{25}$ _D -6.1° (c 0.58, CHCl₃); IR (neat) v 3295, 2942, 2867, 1697, 1646, 1538 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (d, J = 7.6 Hz, 18H), 1.21-1.30 (m, 3H), 1.40 (s, 9H), 2.21-2.35 (m, 2H), 2.48 (t, J = 7.2 Hz, 2H), 2.67 (t, J = 7.2 Hz, 2H), 2.98 (t, J = 7.2 Hz, 2Hz)2H), 3.00-3.07 (m, 2H), 3.41 (q, J = 6.0 Hz, 2H), 4.00-4.10 (m, 1H), 4.58–4.62 (m, 1H), 4.97 (s, 2H), 6.25 (bs, 1H), 6.64 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.98 (bd, J = 7.6 Hz, 1H), 7.15 (dd, J = 8.4, 10.4 Hz, 1H), 7.37–7.28 (m, 3H), 7.44–7.51 (m, 3H), 7.87 (dd, J = 7.2, 2.0 Hz, 1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 12.9 (CH), 17.9 (CH₃), 23.1 (CH₂), 28.4 (CH₃), 29.6 (CH₂), 30.2 (CH₂), 33.3 (CH₂), 34.8 (CH₂), 37.4 (CH₂), 39.4 (CH₂), 39.8 (CH₂), 40.4 (CH₂), 46.6 (CH), 74.4 (CH), 79.2 (C), 118.2 (d, J = 20.5, CH); 118.5 (C), 119.8 (CH), 125.3 (CH), 125.5 (d, J =2.3 Hz, CH), 127.9 (CH), 128.2 (CH), 128.2 (CH), 135.6 (d, J = 8.4 Hz, CH), 135.7 (CH), 137.1 (d, J = 8.0 Hz, C), 137.1 (C), 138.0 (d, J = 4.5 Hz, C), 145.7 (C), 150.5 (C), 154.0 (d, J = 261 Hz, C), 156.3 (C), 170.6 (C), 171.3 (C); HRMS (MALDI) found m/z 937.3572 [M + Na]⁺, C₄₅H₆₄N₄O₈BrSiNa requires 937.3553.

S-(-)-[4-(4-Benzyloxy-5-bromo-21-nitro-11,15-dioxo-2-oxa-10,14-diaza-tricyclo[16.2.2.1^{0,0}tricosa-1(21),3(23),4,6,18(22),19hexaen-13-yl)-butyl]-carbamic Acid tert-Butyl Ester (45). A stirred solution of amide 44 (52 mg, 0.057 mmol) in DMSO (30 mL, 2 mM) containing 4 Å sieves was treated with CsF (86 mg, 0.57 mmol) at room temperature. After 3 h of rapid stirring, the reaction mixture was diluted with water (250 mL) and extracted with CH_2Cl_2 (5 \times 20 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude amide 45. Flash chromatography (SiO₂, 9.4: 0.6 CH₂Cl₂/MeOH) gave **45** (31 mg, 75%) as an viscous oil: $[\alpha]^{25}$ _D -65.0° (c 0.600, CHCl₃); IR (KBr, neat) v 3301, 2929, 1683, 1644, 1531, 1284, 1236 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14–1.38 (m, 6H), 1.40 (s, 9H), 1.50–1.56 (m, 1H), 1.94–2.18 (m, 3H), 2.56-2.67 (m, 2H), 2.87-3.05 (m, 5H), 3.15-3.23 (m, 1H), 3.74-3.79 (m, 1H), 4.02-4.16 (m, 1H), 4.50-4.58 (m, 1H), 5.09-5.15 (m, 2H), 5.54-5.62 (m, 1H), 6.21 (s, 1H), 6.83 (bd, J = 7.2 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 7.29– 7.36 (m, 3H), 7.52–7.54 (m, 2H), 7.80 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.5 (CH₂), 28.4 (CH₂), 29.6 (CH₂), 31.6 (CH₂), 32.7 (CH₂), 32.8 (CH₂), 38.1 (CH₂), 39.3 (CH₂), 39.4 (CH₂), 40.1 (CH₂), 45.3 (CH), 75.4 (CH₂), 79.1 (C), 115.5 (CH), 118.6 (C), 124.1 (C), 125.7 (CH), 127.6 (CH), 128.2 (CH), 128.3 (CH), 128.6 (CH), 135.1 (CH), 136.3 (C), 136.7 (C), 138.9 (C), 142.4 (C), 144.3 (C), 146.6 (C), 151.8 (C), 156.1 (C), 170.5 (C), 171.5 (C); HRMS (MALDI) found m/z 761.2150 [M + Na]⁺, C₃₆H₄₃N₄O₈BrNa requires 761.2157.

S-[4-(20-Amino-4-benzyloxy-5-bromo-11,15-dioxo-2-oxa-10,14diaza-tricyclo[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19-hexaen-13-yl)-butyl]-carbamic Acid *tert*-Butyl Ester (46). CrCl₂ (140 mg, 1.139 mmol) was added to a solution of lactam 45 (50 mg, 0.066 mmol) in DMF (1 mL) at room temperature. After 12 h of stirring, the DMF was removed under reduced pressure and the residue dissolved in EtOAc (10 mL). The organic solution was washed with brine and dried (Na₂SO₄), and the volatiles were removed to give crude 46. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) gave 46 (40 mg, 85%) as a yellow viscous oil: IR (NaCl, neat) ν 3289, 2929, 1643, 1509, 1278 cm⁻¹; ¹H NMR (400 MHz, CD₃OD/ CDCl₃, 1:1) δ 1.25–1.5 (m, 6H), 1.38 (s, 9H), 1.90–2.0 (m, 2H), 2.1–2.3 (m, 1H), 2.50–2.63 (m, 3H), 2.70–3.13 (m, 8H), 3.38– 3.49 (m, 1H), 3.88–4.03 (m, 1H), 5.10 (s, 2H), 6.32 (s, 1H), 6.56 (d, J = 7.2 Hz, 1H), 6.65 (s, 1H), 6.81 (d, J = 7.2 Hz, 1H), 7.03 (s, 1H), 7.25–7.35 (m, 3H), 7.40–7.55 (m, 3H); ¹³C NMR (100 MHz, CD₃OD/CDCl₃, 1:1) δ 23.7 (CH₂), 28.2 (CH₃), 29.5 (CH₂), 32.0 (CH₂), 33.0 (CH₂), 38.5 (CH₂), 38.9 (CH₂), 39.6 (CH₂), 40.2 (CH₂), 45.9 (CH), 75.7 (CH₂), 79.1 (C), 116.5 (CH), 118,1 (CH), 120.4 (C), 122.1 (CH), 126.8 (CH), 128.5 (CH), 128.9 (CH), 136.8 (C), 137.3 (C), 137.8 (C), 138.3 (C), 141.6 (C), 144.0 (C), 152.0 (C), 157.2 (C), 172.3 (C), 172.9 (C); HRMS (MALDI) found *m*/z 731.2386 [M + Na]⁺, C₃₆H₄₅O₆N₄BrNa requires 731.2415.

S-(+)-[4-(4-Benzyloxy-5,20-dibromo-11,15-dioxo-2-oxa-10,14diaza-tricyclo[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19-hexaen-13-yl)-butyl]-carbamic Acid tert-Butyl Ester (47). 'BuONO (2.5 μ L, 0.025 mmol) was added to a stirred solution of CuBr₂ (5.6 mg, 0.01 mmol) in CH₃CN (0.1 mL) at 0 °C. After 1 h, a mixture of lactam 46 (12 mg, 0.02 mmol) in CH₃CN (0.8 mL) was added dropwise into the above solution over 10 min at 0 °C. After stirring for 2 h, the mixture was allowed to warm to room temperature, quenched with HCl (1 N, 1 mL), and extracted with CH_2Cl_2 (4 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude lactam 47 and 50. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 9:1) followed by silca HPLC (SiO₂, 5 μ m Microsorb, 10 \times 250 mm, CH₂Cl₂/MeOH, 99:1.5, 3 mL/min) gave 47 (4.8 mg, 38%) as a colorless amorphous solid and 50 (5.4 mg, 42%) as a colorless amorphous solid. 47: $[\alpha]_D^{25}$ +69.4° (c 0.320, CHCl₃); IR (KBr) ν 3303, 2927, 1681, 1644, 1527, 1488, 1280 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.41 (s, 9H), 1.18–1.68 (m, 5H), 2.00–2.18 (m, 3H), 2.53-3.20 (m, 9H), 3.68-3.79 (m, 1H), 4.12-4.24 (m, 1H), 4.46-4.58 (m, 1H), 5.16 (d, J = 10.8 Hz, 1H), 5.25 (d, J = 10.8Hz, 1H), 5.34 (bs, 1H), 5.99 (bs, 1H), 6.85 (bd, J = 10 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 7.17 (dd, J =8.4, 2.0 Hz, 1H), 7.29–7.38 (m, 3H); 7.48 (d, J = 2.0 Hz,1H), 7.58-7.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.6 (CH₂), 28.4 (CH₃), 29.6 (CH₂), 31.7 (CH₂), 32.7 (CH₂), 32.9 (CH₂), 38.2 (CH₂), 39.7 (CH₂), 40.2 (CH₂), 40.5 (CH₂), 45.2 (CH), 75.2 (CH₂), 79.0 (C), 115.1 (CH), 116.2 (C), 118.6 (C), 123.7 (CH), 126.2 (CH), 128.2 (CH), 128.4 (CH), 128.7 (CH), 129.6 (CH), 134.2 (CH), 136.1 (C), 136.9 (C), 140.1 (C), 143.6 (C), 150.0 (C), 152.0 (C), 156.1 (C), 171.7 (C); HRMS (MALDI) found *m*/*z* 794.1425 [M + Na]⁺, C₃₆H₄₃N₃O₆Br₂Na requires 794.1441.

S-(+)-[4-(4-Benzyloxy-5,20,22-tribromo-11,15-dioxo-2-oxa-10,14-diaza-tricyclo[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19hexaen-13-yl)-butyl]-carbamic acid tert-butyl ester (50): [a]_D ²⁵ +38.3° (*c* 0.360, CHCl₃); IR (KBr) *v* 3334, 2925, 1697, 1652, 1513, 1247 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.41 (s, 9H), 1.18-1.68 (m, 7H), 2.00-2.22 (m, 3H), 2.50-2.66 (m, 2H), 2.78-2.88 (m, 1H), 2.96-3.24 (m, 4H), 3.78-3.86 (m, 1H), 4.18-4.28 (m, 1H), 4.48-4.60 (m, 1H), 5.11 (d, J = 10.4 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 5.28 (bs, 1H), 5.95 (d, J = 2.0 Hz, 1H), 6.87 (bd, J = 9.6 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 7.32–7.39 (m, 3H); 7.36 (s,1H), 7.52 (s, 1H), 7.56–7.59 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (CH₂), 28.4 (CH₃), 29.7 (CH₂), 31.9 (CH₂), 32.7 (CH₂), 32.9 (CH₂), 37.3 (CH₂), 38.3 (CH₂), 40.8 (CH₂), 45.2 (CH), 75.2 (CH₂), 79.0 (C), 114.5 (CH), 114.9 (C), 118.8 (C), 123.0 (C), 126.5 (CH), 128.2 (CH), 128.4 (CH), 128.7 (CH), 128.7 (CH), 135.4 (CH), 136.1 (C), 136.9 (C), 139.4 (C), 143.4 (C), 150.0 (C), 151.9 (C), 156.0 (C), 171.8 (C); HRMS (MALDI) found m/z 872.0502 $[M + Na]^+$, $C_{36}H_{42}N_3O_6Br_3Na$ requires 872.0516.

S-2-Azido-N-[4-(5,20-dibromo-4-hydroxy-11,15-dioxo-2-oxa-10,14-diaza-tricyclo[16.2.2.10,0]tricosa-1(21),3(23),4,6,18(22),19hexaen-13-yl)-butyl]-5-iodo-benzamide (49). BBr₃ (1 M, 10 μ L, 10 μ mol) was added to a solution of lactam 47 (3 mg, 3.8 μ mol) in CH₂Cl₂ (50 μ L), and the orange solution was allowed to stir overnight at room temperature. The solution was directly transferred onto a flash column (SiO₂, CH₂Cl₂/MeOH/NH₂OH, 10:1:0.1) to give the crude amine 48 (2.2 mg) as an amorphous solid that was immediately carried forward. EDCI (2 mg, 10 μ mol) was added to a stirred solution of the crude amine (2.2 mg), HOBt (1.5 mg, 10 μ mol) and 2-azido-5-iodo-benzoic acid³⁷ (3 mg, 10 μ mol) in DMF (5.0 mL) at room temperature. After 5 h, the reaction was quenched with HCl (1 N) and extracted with CH₂Cl₂ (3 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude **49**. Flash chromatography (SiO₂, CH₂Cl₂/MeOH, 20:1) followed by reversed phase HPLC (C₁₈, MeOH/H₂O, 3:1, 4 mL/min) gave pure **49** (0.56 mg, 33% over two steps) as a colorless amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 1.20–1.60 (m, 7H), 1.94–2.18 (m, 3H), 2.48–2.64 (m, 2H), 2.76–3.00 (m, 3H), 3.04–3.14 (m, 1H), 3.22–3.40 (m, 2H), 3.61–3.74 (m, 1H), 4.06–4.19 (m, 1H), 5.41 (bs, 1H), 5.98 (s, 1H), 6.06 (d, *J* = 2.0 Hz, 1H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 7.75 (dd, *J* = 8.4, 2.0 Hz, 1H), 8.37 (d, *J* = 2.0 Hz, 1H); HRMS (MALDI) found *m*/*z* 874.9709 [M + Na]⁺, C₃₁H₃₁N₆O₅Br₂NaI requires 874.9660.

S-2-Azido-5-iodo-N-[4-(5,20,22-tribromo-4-hydroxy-11,15dioxo-2-oxa-10,14-diaza-tricyclo[16.2.2.10,0]tricosa-1(21), 3(23),4,6,18(22),19-hexaen-13-yl)-butyl]-benzamide (52). BBr₃ (1 M, 10 μ L, 10 μ mol) was added to a stirred solution of lactam 50 (2 mg, 2.4 μ mol) in CH₂Cl₂ (50 μ L) at room temperature. The solution was directly transferred onto a flash column (SiO2, CH2Cl2/ MeOH/NH₂OH, 10:1:0.1) to give crude amine 51 (1.8 mg) as an amorphous solid that was immediately carried forward. EDCI (2 mg, 10 μ mol) was added to a stirred solution of crude amine 51 (2.2 mg), HOBt (1.5 mg, 10 µmol), and 2-azido-5-iodo-benzoic acid³⁷ (3 mg, 10 μ mol) in DMF (5.0 mL) at room temperature. After 5 h, the reaction was quenched with HCl (1 N) and extracted with CH_2Cl_2 (3 × 5 mL). The organic layers were combined, washed with brine, and dried (Na₂SO₄), and the volatiles were removed to give crude 52. Flash chromatography (SiO₂, CH₂Cl₂/ MeOH, 20:1) followed by reversed phase HPLC (C₁₈, MeOH/H₂O, 3:1, 4 mL/min) gave 52 (0.80 mg, 48% over two steps) as a colorless amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 1.20-1.60 (m, 4H), 1.91–2.24 (m, 5H), 2.48–2.62 (m, 2H), 2.91–3.22 (m, 4H), 3.28-3.48 (m, 2H), 3.74-3.84 (m, 1H), 4.12-4.24 (m, 1H), 5.24 (bt, J = 5.6 Hz, 1H), 5.93 (s, 1H), 6.02 (d, J = 2.0 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.96 (dd, J = 8.4, 2.0 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 7.40 (bt, J = 5.6 Hz, 1H), 7.46 (s, 1H), 7.48(s, 1H), 7.75 (dd, J = 8.4, 2.0 Hz, 1H), 8.37 (d, J = 2.0 Hz, 1H); HRMS (MALDI) found m/z 952.8767 [M + Na]⁺, C₃₁H₃₀N₆O₅-Br₃NaI requires 952.8765.

Acknowledgment. We thank S. Goth and T.-A. Ta for assistance with some of the binding assays. Funding for this study was provided by the U.S. National Institutes of Health (GM57560 to T.F.M., and ES11269 to I.N.P.) and the U.S. Environmental Protection Agency (R829388 to I.N.P.).

Supporting Information Available: Spectral and X-ray crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Abraham, R. T.; Wiederrecht, G. J. Immunopharmacology of rapamycin. Annu. Rev. Immunol. 1996, 14, 483–510.
- Marks, A. R. Cellular functions of immunophilins. *Physiol. Rev.* 1996, 76, 631–649.
- (3) Snyder, S. H.; Sabatini, D. M.; Lai, M. M.; Steiner, J. P.; Hamilton, G. S. et al. Neural actions of immunophilin ligands. *Trends Pharmacol. Sci.* **1998**, *19*, 21–26.
- (4) Heitman, J.; Movva, N. R.; Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. *Science* 1991, 253, 905–909.
- (5) Lorenz, M. C.; Heitman, J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 1995, 270, 27531–27537.
- (6) Griffith, J. P.; Kim, J. L.; Kim, E. E.; Sintchak, M. D.; Thomson, J. A. et al. X-ray structure of calcineurin inhibited by the immunophilinimmunosuppressant FKBP12–FK506 complex. *Cell* **1995**, *82*, 507–522.
- (7) Choi, J.; Chen, J.; Schreiber, S. L.; Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. *Science* **1996**, *273*, 239–242.

- (8) Brunn, G. J.; Hudson, C. C.; Sekulic, A.; Williams, J. M.; Hosoi, H. et al. Phosphorylation of the translational repressor PHAS–I by the mammalian target of rapamycin. *Science* **1997**, 277, 99–101.
- (9) Pessah, I. N. Common immunophilin mechanism for noncoplanar PCBs and naturally occurring bromotyrosines from *Ianthella basta*. *Organohalogen Compd.* **1998**, *37*, 13–17.
- (10) Pessah, I. N.; Molinski, T. F.; Meloy, T. D.; Wong, P.; Buck, E. D. et al. Bastadins relate Ryanodine-sensitive and -insensitive Ca²⁺ efflux pathways in Skeletal SR and BC(3)H1 cells. *Am. J. Physiol.* (*Cell Physiol.*) **1997**, *41*, C 601-C 614.
 (11) Chen, L.; Molinski, T. F.; Pessah, I. N. Bastadin 10 stabilizes the
- (11) Chen, L.; Molinski, T. F.; Pessah, I. N. Bastadin 10 stabilizes the open conformation of the Ryanodine-sensitive Ca²⁺ channel in an FKBP12-dependent manner. J. Biol. Chem. **1999**, 274, 32603–32612.
- (12) Franklin, M. A.; Penn, S. G.; Lebrilla, C. B.; Lam, T. H.; Pessah, I. N. et al. Bastadin 20 and Bastadin *O*-Sulfate Esters from *Ianthella basta*: Novel Modulators of the RyR1 FKBP12 Receptor Complex. *J. Nat. Prod.* **1996**, *59*, 1121–1127.
- (13) Mack, M. M.; Molinski, T. F.; Buck, E. D.; Pessah, I. N. Novel modulators of skeletal muscle FKBP12/calcium channel complex from *Ianthella basta*. Role of FKBP12 in channel gating. *J. Biol. Chem.* **1994**, 269, 23236–23249.
- (14) Park, S. K.; Jurek, J.; Carney, J. R.; Scheuer, P. J. Two more bastadins, 16 and 17, from an Indonesian sponge *Ianthella basta. J. Nat. Prod.* **1994**, *57*, 407–410.
- (15) Jaspars, M.; Rali, T.; Laney, M.; Schatzman, R. C.; Diaz, M. C. et al. The search for inosine 5'-phosphate dehydrogenase (IMPDH) inhibitors from marine sponges. Evaluation of the bastadin alkaloids. *Tetrahedron* **1994**, *50*, 7367–7374.
- (16) Gulavita, N. K.; Wright, A. E.; McCarthy, P. J.; Pomponi, S. A.; Kelly-Borges, M. et al. Isolation and structure elucidation of 34sulfatobastadin 13, an inhibitor of the endothelin A receptor, from a marine sponge of the genus *Ianthella. J. Nat. Prod.* **1993**, *56*, 1613– 1617.
- (17) Dexture, A. F.; Garson, M. J.; Hemling, M. E. Isolation of a novel bastadin from the temperate marine Sponge *Ianthella* sp. *J. Nat. Prod.* **1993**, *56*, 782–786.
- (18) Butler, M. S.; Lim, T. K.; Capon, R. J.; Hammond, L. S. The bastadins revisited: new chemistry from the Australian marine sponge *Ianthella basta. Aust. J. Chem.* **1991**, *44*, 287–296.
- (19) Carney, J. R.; Scheuer, P. J.; Kelly-Borges, M. A new bastadin from the sponge *Psammaplysilla purpurea*. J. Nat. Prod. **1993**, 56, 153– 157.
- (20) Pordesimo, E. O.; Schmitz, F. J. New bastadins from the sponge *Ianthella basta. J. Org. Chem.* **1990**, *55*, 4704–4709.
- (21) Miao, S.; Andersen, R. J.; Allen, T. M. Cytotoxic metabolites from the sponge *Ianthella basta* collected in Papua New Guinea. *J. Nat. Prod.* **1990**, *53*, 1441–1446.
- (22) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J. Brominated tyrosine-derivated metabolites from the sponge *Ianthella basta*. *Tetrahedron Lett.* **1980**, *21*, 2277–2280.
- (23) Coll John, C.; Kearns Philip, S.; Rideout John, A.; Sankar, V. Bastadin 21, a novel isobastarane metabolite from the Great Barrier Reef marine sponge Ianthella quadrangulata. *J. Nat. Prod.* 2002, 65, 753–756.
- (24) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.; Blount, J. F. Brominated tyrosine-derived metabolites from the sponge *Ianthella basta. Aust. J. Chem.* **1981**, *34*, 765–786.
- (25) Bigot, A.; Zhu, J. Synthesis of cycloisodityrosine revisited: A selective ring forming process. *Tetrahedron Lett.* **1998**, *39*, 551– 554.
- (26) Bigot, A.; Dau, M. E. T. H.; Zhu, J. Total Synthesis of an Antitumor Agent RA-VII via an Efficient Preparation of Cycloisodityrosine. J. Org. Chem. 1999, 64, 6283–6296.
- (27) Masuno, M. N.; Molinski, T. F. Regioselective cationic reduction of 2-aryl-1-N-(ethoxycarbonyl)enamines to 2-arylethylamine carbamates. *Tetrahedron Lett.* 2001, 42, 8263–8266.

- (28) Masuno, M. N.; Molinski, T. F. Cationic Reduction of Bastadin-4 to Bastadin-5. Preparation of 5-[²H]-Bastadin-5 by Site-Specific Isotopic Labeling. J. Nat. Prod. 2003, 66, 112–114.
- (29) Wymann, W. E.; Davis, R.; Patterson, J. W., Jr.; Pfister, J. R. Selective alkylations of certain phenolic and enolic functions with lithium carbonate-alkyl halide. *Synth. Commun.* **1988**, *18*, 1379– 1384.
- (30) Jessup, P. J.; Petty, C. B.; Roos, J.; Overman, L. E. 1-N-Acylamino-1,3-dienes from 2,4-pentadienoic acids by the Curtius rearrangement: benzyl *trans*-1,3-butadiene-1-carbamate. *Org. Synth.* **1980**, *59*, 1–9.
- (31) Park, H.; Cao, B.; Joullie, M. M. Regioselective asymmetric aminohydroxylation approach to a β-hydroxyphenylalanine derivative for the synthesis of ustiloxin D. J. Org. Chem. 2001, 66, 7223– 7226.
- (32) Harmon, R. E.; Parsons, J. L.; Cooke, D. W.; Gupta, S. K.; Schoolenberg, J. Homogeneous catalytic hydrogenation of unsaturated organic compounds. J. Org. Chem. 1969, 34, 3684–3685.
- (33) Hosoya, T.; Aoyama, H.; Ikemoto, T.; Hiramatsu, T.; Kihara, Y. et al. [¹²⁵I]-*N*-[(3-Azido-5-iodo)benzyl]dantrolene and [¹²⁵I]-*N*-{[3-Iodo-5-(3-trifluoromethyl-3*H*-diazirin-3-yl)]benzyl}dantrolene: photo-affinity probes specific for the physiological Ca²⁺ release from sarcoplasmic reticulum of skeletal muscle. *Bioorg. Med. Chem. Lett.* 2002, 3263–3265.
- (34) (a) Doyle, M. P.; Siegfried, B.; Dellaria, J. F., Jr. Alkyl nitrite-metal halide deamination reactions. 2. Substitutive deamination of arylamines by alkyl nitrites and copper(II) halides. A direct and remarkably efficient conversion of arylamines to aryl halides. J. Org. Chem. 1977, 42, 2426–2431. (b) Doyle, M. P.; Dellaria, J. F., Jr.; Siegfried, B.; Bishop, S. W. Reductive deamination of arylamines by alkyl nitrites in N,N-dimethylformamide. A direct conversion of arylamines to aromatic hydrocarbons. J. Org. Chem. 1977, 42, 3494– 3498.
- (35) Using the Eyring rate equation, a coalescence temperature of $T_C = 105$ °C predicts an energy of activation of $\Delta G^+_{\star} = 16.8$ kcal/mol for the ¹H NMR frequencies of the *O*Bn methylene rotor in **27**. Gutsche, C. D.; Bauer, L. J. Calixarenes. 13. The Conformational Properties of Calix[4]arenes, Calix[6]arenes, Calix[8]arenes, and Oxacalixarenes *J. Am. Chem. Soc.* **1985**, *107*, 6052–6059.
- (36) Guichard, G.; Abele, S.; Seebach, D. Preparation of *N*-Fmoc-protected β2- and β3-amino acids and their use as building blocks for the solidphase synthesis of β-peptides. *Helv. Chim. Acta* **1998**, *81*, 187– 206.
- (37) Latli, B.; Tomizawa, M.; Casida, J. E. Synthesis of a Novel [¹²⁵I]-Neonicotinoid Photoaffinity Probe for the Drosophila Nicotinic Acetylcholine Receptor. *Bioconjugate Chem.* **1997**, *8*, 7–14.
- (38) Berchtold, M. W.; Brinkmeier, H.; Muntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. *Physiol. Rev.* 2000, *80*, 1215–1265.
- (39) Saito, A.; Seiler, S.; Chu, A.; Fleischer, S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 1984, 99, 875–885.
- (40) Wong, P. W.; Pessah, I. N. Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels. *Mol. Pharmacol.* **1996**, *49*, 740–751.
- (41) Wong, P. W.; Pessah, I. N. Noncoplanar PCB 95 alters microsomal calcium transport by an immunophilin FKBP 12-dependent mechanism. *Mol. Pharmacol.* **1997**, *51*, 693–702.

JM050708U